Homeomorphisms of the line which preserve BMO

Peter W. Jones

Suppose $u: \mathbf{R} \to \mathbf{R}$ is an increasing homeomorphism. For a function f we then define $(Uf)(x) = f(u^{-1}(x))$. The purpose of this paper is to classify those u for which the operator U is bounded on *BMO*, the space of functions of bounded mean oscillation. Our theorem answers a question of Coifman and Meyer, and was announced in [2]. Though some time has passed since then, the result still seems to be of some interest as it has been used in several papers. The corresponding problem for \mathbf{R}^n , $n \ge 2$, was solved by Reimann [5], who showed that U is bounded on *BMO* if and only if u is quasiconformal. The translation of this statement to \mathbf{R} , i.e. that u is quasiregular, is false.

In order to understand our result, we must first recall the definition of the Muckenhoupt class A_{∞} . A positive Baire measure μ is said to be in A_{∞} if there are constants $C, \delta > 0$ such that whenever I is an interval and $E \subset I$,

$$\frac{\mu(E)}{\mu(I)} \leq C\left(\frac{|E|}{|I|}\right)^{\delta},$$

where $|\cdot|$ denotes Lebesgue measure. Thus, every $\mu \in A_{\infty}$ satisfies $d\mu(x) = \omega(x) dx$. For such a positive weight function ω , we put $\omega(E) = \int_E \omega dx$. We will need to use the fact that whenever u is an increasing homeomorphism, the measure $u' \in A_{\infty}$ if and only if the same is true for u^{-1} . See [1] for a proof.

Theorem. The following conditions are equivalent:

- a) $U\varphi \in BMO$ whenever $\varphi \in BMO$ is lower semicontinuous.
- b) U is a bounded mapping from BMO to BMO.
- c) U is a bijection from BMO to BMO.
- d) $u' \in A_{\infty}$.

The proof of the theorem relies upon two useful facts. The first is the theorem of John and Nirenberg [4]. Let I denote a generic (bounded) interval, and let