On the spectral synthesis problem for points in the dual of a nilpotent Lie group

Jean Ludwig

1. Introduction

Let A be a *-semi-simple Banach algebra with involution *. One of the main problems concerning the structure of A is the determination of the space \mathscr{I} of the twosided closed ideals of A. Let $\operatorname{Prim}_*(A)$ be the space of the kernels of the topologically irreducible unitary representations of A equipped with the Jacobson topology. For I in \mathscr{I} , let $h(I) = \{J \in \operatorname{Prim}_*(A) | J \supset I\}$; (h(I) is a closed subset of $\operatorname{Prim}_*(A)$) and define for the closed subset C of $\operatorname{Prim}_*(A)$ the subset \mathscr{I}_C of \mathscr{I} by $\mathscr{I}_C =$ $\{I \in \mathscr{I} | h(I) = C\}$. The closed subset C of $\operatorname{Prim}_*(A)$ is called a set of spectral synthesis if \mathscr{I}_C consists only of one point, namely the ideal ker $C = \bigcap_{\mathscr{I} \in C} J$. The spectral synthesis problem has been most intensively studied for the algebra $A = L^1(G)$, where G is an abelian, locally compact group G. The first result was the famous theorem of N. Wiener who showed that the empty set is a set of synthesis in $\operatorname{Prim}_* L^1(\mathbb{R})$. The latest deep results are those of I. Domar. (see for instance [4]).

Almost nothing is known for the algebra $L^1(G)$ is G is not abelian. If G is a connected, simply connected nilpotent Lie group, the dual space \hat{G} is well known and thus also the space $\operatorname{Prim}_{+}(L^1(G))$.

Let φ be the Lie algebra of G and Ad* the coadjoint action of G on φ^* . By Kirillow's theorem and Brown's proof of the Kirillow conjecture ([7], [2]) \hat{G} is homeomorphic with the orbit space $\varphi^*/_{Ad*(G)}$ and [1] tells us that $\operatorname{Prim}_*(L^1(G)) \cong \varphi^*/_{Ad*(G)}$. Thus we may indentify the closed subsets C of $\operatorname{Prim}_*(L^1(G))$ with the closed G-invariant subsets of φ^* . $L^1(G)$ has a remarkable property: For every closed subset C of \hat{G} there exists a twosided ideal j(C) in $L^1(G)$ with the properties:

1) h(j(A)) = A; 2) j(A) is contained in every closed, twosided ideal I of $L^1(G)$ with $h(I) \subset A$ ([11]).

If G is a group of step 1 and of step 2 every point in \hat{G} is a set of spectral synthesis [9]. In this paper we show that in general a point is not a set of synthesis