Basis properties of Hardy spaces

Per Sjölin and Jan-Olov Strömberg

1. Introduction

Set I=[0, 1] and let $(\chi_n)_1^{\infty}$ denote the Haar orthogonal system. If $f \in L^1(I)$ we write $Gf(t) = \int_0^t f(u) du$, $t \in I$. Let *m* be an integer, $m \ge 0$, and let $(f_n^{(m)})_{n=-m}^{\infty}$ denote the system of functions which is obtained when we apply the Gram-Schmidt orthonormalization procedure to the sequence of functions 1, $t, t^2, \ldots, t^{m+1}, G^{m+1}\chi_2$, $G^{m+1}\chi_3$, $G^{m+1}\chi_4$, ... on *I*. We use here the usual scalar product in $L^2(I)$. The systems $(f_n^{(m)})$ are called spline systems and in particular $(f_n^{(0)})$ is called the Franklin system. These systems are complete in $L^2(I)$ and have been studied by e.g. *Z*. Ciesielski and J. Domsta [6]. We shall write f_n instead of $f_n^{(m)}$ and set $f_n(t)=0$ for $t \in \mathbb{R} \setminus I$.

For $n \ge 2$ we have $n=2^j+l$ where $j\ge 0$, $1\le l\le 2^j$, and set $t_n=(l-1/2)2^{-j}$. Then $D^m f_n$ is absolutely continuous on I and it is known that

$$|D^k f_n(t)| \le M n^{k+1/2} r^{n|t-t_n|}, \quad 0 \le k \le m+1, \quad n \ge 2, \quad t \in I,$$
(1)

where M and r are constants depeding only on m and 0 < r < 1 (see [6], p. 316).

Assume that ψ belongs to the Schwartz class of functions S(**R**) and that $\int_{\mathbf{R}} \psi(x) dx \neq 0$. Set $\psi_t(x) = t^{-1} \psi(x/t)$, t > 0, $x \in \mathbf{R}$, and for $f \in S'(\mathbf{R})$

$$f^*(x) = \sup_{t>0} |f * \psi_t(x)|, \quad x \in \mathbf{R}.$$

The Hardy space $H^p(\mathbf{R})$, 0 , is then defined to be the space of all <math>f such that $||f||_{H^p} = ||f^*||_p < \infty$, where $||g||_p$ is defined as $(\int |g(x)|^p dx)^{1/p}$.

For $\alpha > 0$ we set $N = [\alpha]$, where [] denotes the integral part, and $\delta = \alpha - N$. If α is not an integer set

$$\dot{A}_{\alpha} = \left\{ \varphi \in C^{N}(\mathbf{R}); \sup_{h \neq 0} \|\Delta_{h} D^{N} \varphi\|_{\infty} / |h|^{\delta} < \infty \right\}$$

(here $\Delta_h F(x) = F(x+h) - F(x)$) and if α is an integer set

$$\dot{A}_{\alpha} = \Big\{ \varphi \in C^{N-1}(\mathbf{R}); \sup_{h \neq 0} \|\Delta_h^2 D^{N-1} \varphi\|_{\infty} / |h| < \infty \Big\}.$$