Pacific Journal of Mathematics
- Pacific J. Math.
- Volume 82, Number 1 (1979), 237-247.
What is the probability that two elements of a finite group commute?
Full-text: Open access
Article information
Source
Pacific J. Math., Volume 82, Number 1 (1979), 237-247.
Dates
First available in Project Euclid: 8 December 2004
Permanent link to this document
https://projecteuclid.org/euclid.pjm/1102785075
Mathematical Reviews number (MathSciNet)
MR549847
Zentralblatt MATH identifier
0408.20058
Subjects
Primary: 20D99: None of the above, but in this section
Citation
Rusin, David J. What is the probability that two elements of a finite group commute?. Pacific J. Math. 82 (1979), no. 1, 237--247. https://projecteuclid.org/euclid.pjm/1102785075
References
- [1] E. A. Bertram, A density theorem on the numberof eonjugacy classes infinite groups, Pacific J. Math., 55 (1974), 329-333.
- [2] P. Erds and P. Turan, On some problems of a statistical group theory, IV, Acta Math. Acad. Sci. Hung., 19 (1968), 413-435.
- [3] W. Feit and N. J. Fine, Pairs of commuting matrices over a finite field, Duke Math. J., 27 (1960), 91-94.
- [4] W. H. Gustafson, What is the probability that two group elements commute*! Amer. Math. Monthly, 80 (1973), 1031-1034.
- [5] B. Huppert, Endliche Gruppe I, Springer Verlag, Berlin, 1967.
- [6] N. Jacobson, Basic Algebra I, W. H. Freeman and Co., San Francisco, (1974), 457-465.
- [7] K. Joseph, Several conjectures on commutativityin algebraic structures,Amer. Math. Monthly, 84 (1977), 550-551.
- [8] P. X. Gallagher, The number of eonjugacy classes in a finite group, Math. Z., 118 (1970), 175-179.
- [9] D. MacHale, Commutativityin finite rings, Amer. Math. Monthly, 83 (1976), 30-32.
- [10] D. MacHale, How commutative can a non-commuiativegroup be Math. Gazette, LVIII (1974), 199-202.
- [11] I. D. MacDonald, Some explicit bounds in groups with finite derived qroups, Proc. London Math. Soc, Series 3 11 (1961), 23-56.
- [12] M. Newman, A bound for the number of eonjugacy classes in a group, J. London Math. Soc, 43 (1960), 108-110.
- [13] W. R. Scott, Group Theory, Prentice Hall, Englewood Cliffs (N. J.) (1964), (450).Mathematical Reviews (MathSciNet): MR29:4785
- [14] G. Sherman, What is the probability an automorphism fixes a group element*! Amer. Math. Monthly, 82 (1975), 261-264.
- [15] G. Sherman, A lower bound for the number of eonjugacy classes in a finite nilpotent group, Notices Amer. Math. Soc, 25 (1978), A68.Zentralblatt MATH: 0377.20017
- [16] L. Weisner, Abstract Theory of Inversion of Finite Series, Trans. Amer. Math. Soc, 38 (1935), 474-492.
Pacific Journal of Mathematics, A Non-profit Corporation

- You have access to this content.
- You have partial access to this content.
- You do not have access to this content.
More like this
- On non-commuting sets in finite soluble CC-groups
Ballester-Bolinches, Adolfo and Cossey, John, Publicacions Matemàtiques, 2012 - Centralizers of Commuting Elements in Compact Lie Groups
Nairn, Kris A, Journal of Generalized Lie Theory and Applications, 2016 - Chapter IV. Groups and Group Actions
Anthony W. Knapp, Basic Algebra, Digital Second Edition (East Setauket, NY: Anthony W. Knapp, 2016), 2016
- On non-commuting sets in finite soluble CC-groups
Ballester-Bolinches, Adolfo and Cossey, John, Publicacions Matemàtiques, 2012 - Centralizers of Commuting Elements in Compact Lie Groups
Nairn, Kris A, Journal of Generalized Lie Theory and Applications, 2016 - Chapter IV. Groups and Group Actions
Anthony W. Knapp, Basic Algebra, Digital Second Edition (East Setauket, NY: Anthony W. Knapp, 2016), 2016 - Commutators and squares in free groups
Sarkar, Sucharit, Algebraic & Geometric Topology, 2004 - On the fixed-point set of an automorphism of a group
Wehrfritz, B. A. F., Publicacions Matemàtiques, 2013 - Distortion elements in group actions on surfaces
Franks, John and Handel, Michael, Duke Mathematical Journal, 2006 - A classifying space for commutativity in Lie groups
Adem, Alejandro and Gómez, José, Algebraic & Geometric Topology, 2015 - Random Walks on Groups and Monoids with a Markovian Harmonic Measure
Jean, Mairesse, Electronic Journal of Probability, 2005 - On the uniform perfectness of diffeomorphism groups
Tsuboi, Takashi, , 2008 - Chapter VII. Advanced Group Theory
Anthony W. Knapp, Basic Algebra, Digital Second Edition (East Setauket, NY: Anthony W. Knapp, 2016), 2016