Statistics Surveys

Recent developments in nonregular fractional factorial designs

Hongquan Xu, Frederick K.H. Phoa, and Weng Kee Wong

Full-text: Open access

Abstract

Nonregular fractional factorial designs such as Plackett-Burman designs and other orthogonal arrays are widely used in various screening experiments for their run size economy and flexibility. The traditional analysis focuses on main effects only. Hamada and Wu (1992) went beyond the traditional approach and proposed an analysis strategy to demonstrate that some interactions could be entertained and estimated beyond a few significant main effects. Their groundbreaking work stimulated much of the recent developments in optimality criteria, construction and analysis of nonregular designs. This paper reviews important developments in nonregular designs, including projection properties, generalized resolution, generalized minimum aberration criteria, optimality results, construction methods and analysis strategies.

Article information

Source
Statist. Surv., Volume 3 (2009), 18-46.

Dates
First available in Project Euclid: 9 June 2009

Permanent link to this document
https://projecteuclid.org/euclid.ssu/1244555797

Digital Object Identifier
doi:10.1214/08-SS040

Mathematical Reviews number (MathSciNet)
MR2520978

Zentralblatt MATH identifier
1300.62056

Keywords
Factor screening generalized minimum aberration generalized resolution minimum moment aberration orthogonal array Plackett-Burman design projectivity

Citation

Xu, Hongquan; Phoa, Frederick K.H.; Wong, Weng Kee. Recent developments in nonregular fractional factorial designs. Statist. Surv. 3 (2009), 18--46. doi:10.1214/08-SS040. https://projecteuclid.org/euclid.ssu/1244555797


Export citation

References

  • Ai, M.Y. and He, S.Y. (2006). Generalized wordtype pattern for nonregular factorial designs with multiple groups of factors., Metrika, 64, 95-108.
  • Ai, M.Y. and Zhang, R.C. (2004a). Projection justification of generalized minimum aberration for asymmetrical fractional factorial designs., Metrika, 60, 279-285.
  • Ai, M.Y. and Zhang, R.C. (2004b). Theory of optimal blocking of nonregular factorial designs., Canad. J. Statist., 32, 57-72.
  • Ai, M.Y., Li, P.F. and Zhang, R.C. (2005). Optimal criteria and equivalence for nonregular fractional factorial designs., Metrika, 62, 73-83.
  • Box, G.E.P. and Draper, N.R. (1987)., Empirical Model-building and Response Surfaces. New York: Wiley.
  • Box, G.E.P. and Hunter, J.S. (1961). The, 2kp fractional factorial designs. Technometrics, 3, 311–351, 449–458.
  • Box, G.E.P. and Meyer, R.D. (1986). An analysis for unreplicated fractional factorials., Technometrics, 28, 11–18.
  • Box, G.E.P. and Meyer, R.D. (1993). Finding the active factors in fractionated screening experiments., J. Quality Technology, 25, 94–105.
  • Box, G.E.P. and Tyssedal, J. (1996). Projective properties of certain orthogonal arrays., Biometrika, 83, 950–955.
  • Box, G.E.P., Hunter, W.G. and Hunter, J.S. (2005)., Statistics for Experimenters: Design, Innovation, and Discovery, 2nd ed. New York: Wiley.
  • Bulutoglu, D.A. and Cheng, C.S. (2003). Hidden projection properties of some nonregular fractional factorial designs and their applications., Ann. Statist., 31, 1012-1026.
  • Bulutoglu, D.A. and Margot, F. (2008). Classification of orthogonal arrays by integer programming., J. Statist. Plann. Inference, 138, 654–666.
  • Butler, N.A. (2003). Minimum aberration construction results for nonregular two-level fractional factorial designs., Biometrika, 90, 891–898.
  • Butler, N.A. (2004). Minimum, G2-aberration properties of two-level foldover designs. Statist. Probab. Lett., 67, 121–132.
  • Butler, N.A. (2005). Generalised minimum aberration construction results for symmetrical orthogonal arrays., Biometrika, 92, 485-491.
  • Butler, N.A. (2007). Results for two-level fractional factorial designs of resolution IV or more., J. Statist. Plann. Inference, 137, 317-323.
  • Chen, H. and Cheng, C.-S. (1999). Theory of optimal blocking of, 2nm designs. Ann. Statist. 27 1948–1973.
  • Chen, H. and Hedayat, A.S. (1996)., 2nl designs with weak minimum aberration. Ann. Statist. 24 2536–2548.
  • Chen, J., Sun, D.X. and Wu, C.F.J. (1993). A catalogue of two-level and three-level fractional factorial designs with small runs., Internat. Statist. Rev., 61, 131–145.
  • Cheng, C.S. (1980). Orthogonal arrays with variable numbers of symbols., Ann. Statist., 8, 447–453.
  • Cheng, C.S. (1995). Some projection properties of orthogonal arrays., Ann. Statist., 23, 1223–1233.
  • Cheng, C.S. (1998). Some hidden projection properties of orthogonal arrays with strength three., Biometrika, 85, 491–495.
  • Cheng, C.S. (2006). Projection properties of factorial designs for factor screening., Screening: Methods for Experimentation in Industry, Drug Discovery, and Genetics, Ed. A. Dean and S. Lewis, pp. 156–168. New York: Springer.
  • Cheng, C.S., Deng, L.Y. and Tang, B. (2002). Generalized minimum aberration and design efficiency for nonregular fractional factorial designs., Statist. Sinica, 12, 991–1000.
  • Cheng, C.S., Mee, R.W. and Yee, O. (2008). Second order saturated orthogonal arrays of strength three., Statist. Sinica, 18, 105-119.
  • Cheng, C.S., Steinberg, D.M. and Sun, D.X. (1999). Minimum aberration and model robustness for two-level fractional factorial designs., J. Roy. Statist. Soc. Ser. B, 61, 85–93.
  • Cheng, S.W. and Wu, C.F.J. (2001). Factor screening and response surface exploration (with discussion)., Statist. Sinica, 11, 553–604.
  • Cheng, S.W. and Ye, K.Q. (2004). Geometric isomorphism and minimum aberration for factorial designs with quantitative factors., Ann. Statist., 32, 2168–2185.
  • Cheng, S.W., Li, W. and Ye, K.Q. (2004). Blocked nonregular two-level factorial designs., Technometrics, 46, 269–279.
  • Chipman, H., Hamada, M. and Wu, C.F.J. (1997). A Bayesian variable-selection approach for analyzing designed experiments with complex aliasing., Technometrics, 39, 372–381.
  • Dean, A.M. and Voss, D.T. (1999)., Design and analysis of experiments. New York: Springer.
  • Deng, L.Y. and Tang, B. (1999). Generalized resolution and minimum aberration criteria for Plackett-Burman and other nonregular factorial designs., Statist. Sinica, 9, 1071–1082.
  • Deng, L.Y. and Tang, B. (2002). Design selection and classification for Hadamard matrices using generalized minimum aberration criteria., Technometrics, 44, 173–184.
  • Dey, A. (2005). Projection properties of some orthogonal arrays., Statist. Probab. Lett., 75, 298–306.
  • Efron, B., Hastie, T., Johnstone, I. and Tibshirani, R. (2004). Least angle regression., Ann. Statist., 32, 407-499.
  • Evangelaras, H., Koukouvinos, C. and Lappas, E. (2007). 18-run nonisomorphic three level orthogonal arrays., Metrika, 66, 31-37.
  • Evangelaras, H., Koukouvinos, C. and Lappas, E. (2008). 27-run nonisomorphic three level orthogonal arrays: Identification, evaluation and projection properties., Utilitas Mathematica, in press.
  • Evangelaras, H., Koukouvinos, C., Dean, A.M., and Dingus, C.A. (2005). Projection properties of certain three level orthogonal arrays., Metrika, 62, 241–257.
  • Fang, K.T. and Mukerjee, R. (2000). A connection between uniformity and aberration in regular fractions of two-level factorials., Biometrika, 87, 193–198.
  • Fang, K.T. and Qin, H. (2005). Uniformity pattern and related criteria for two-level factorials., Science in China, Series A: Mathematics, 48, 1-11.
  • Fang, K.T. and Wang, Y. (1994)., Number-theoretic methods in statistics. London: Chapman and Hall.
  • Fang, K.T., Li, R. and Sudjianto, A. (2006)., Design and Modeling for Computer Experiments. London: Chapman and Hall/CRC.
  • Fang, K.T., Lin, D.K.J., Winker, P. and Zhang, Y. (2000). Uniform design: Theory and application., Technometrics, 42, 237-248.
  • Fang, K.T., Zhang, A. and Li, R. (2007). An effective algorithm for generation of factorial designs with generalized minimum aberration., J. Complexity, 23, 740–751.
  • Fries, A. and Hunter, W.G. (1980). Minimum aberration, 2kp designs. Technometrics, 22, 601–608.
  • Gilmour, S. (2006). Factor screening via supersaturated designs., Screening: Methods for Experimentation in Industry, Drug Discovery, and Genetics, Ed. A. Dean and S. Lewis, pp. 169–190. New York: Springer.
  • Hall, M. Jr. (1961). Hadamard matrix of order 16., Jet Propulsion Laboratory Research Summary, No. 36-10, Vol. 1, pp. 21–26, Pasadena, California.
  • Hall, M. Jr. (1965). Hadamard matrix of order 20., Jet Propulsion Laboratory Technical Report, No. 32-761, Pasadena, California.
  • Hamada, M. and Wu, C.F.J. (1992). Analysis of designed experiments with complex aliasing., J. Quality Technology, 24, 130–137.
  • Hammons, A.R., Jr., Kumar, P.V., Calderbank, A.R., Sloane, N.J.A. and Sole, P. (1994). The, Z4-linearity of Kerdock, Preparata, Goethals, and related codes. IEEE Trans. Inform. Theory, 40, 301–319.
  • Hedayat, A. and Wallis, W.D. (1978). Hadamard matrices and their applications., Ann. Statist., 6, 1184–1238.
  • Hedayat, A.S., Sloane, N.J.A. and Stufken, J. (1999)., Orthogonal Arrays: Theory and Applications. New York: Springer.
  • Hickernell, F.J. (1998). A generalized discrepancy and quadrature error bound., Math. Comp., 67, 299–322.
  • Hickernell, F.J. and Liu, M.Q. (2002). Uniform designs limit aliasing., Biometrika, 89, 893–904.
  • Hunter, G.B., Hodi, F.S. and Eager, T.W. (1982). High-cycle fatigue of weld repaired cast Ti-6Al-4V., Metallurgical Transactions A, 13, 1589–1594.
  • Katsaounis, T.I. and Dean, A.M. (2008). A survey and evaluation of methods for determination of combinatorial equivalence of factorial designs., J. Statist. Plann. Inference, 138, 245-258.
  • Khuri, A.I. and Cornell, J.A. (1996)., Response Surfaces: Designs and Analyses, 2nd ed. New York: Marcel Dekker.
  • King, C. and Allen, L. (1987). Optimization of winding operation for radio frequency chokes., Fifth Symposium on Taguchi Methods, pp. 67–80. Dearborn, Michigan: American Supplier Institute.
  • Kuhfeld, W.F. (2005)., Marketing Research Methods in SAS. SAS Institute Inc., Cary, NC. http://support.sas.com/techsup/technote/ts722.pdf.
  • Lam, C. and Tonchev, V.D. (1996). Classification of affine resolvable 2-(27,9,4) designs., J. Statist. Plann. Inference, 56, 187–202.
  • Li, W. (2006). Screening designs for model selection., Screening: Methods for Experimentation in Industry, Drug Discovery, and Genetics, Ed. A. Dean and S. Lewis, pp. 207-234. New York: Springer.
  • Li, W., Lin, D.K.J. and Ye, K.Q. (2003). Optimal foldover plans for two-level nonregular orthogonal designs., Technometrics, 45, 347-351.
  • Li, Y., Deng, L.-Y. and Tang, B. (2004). Design catalog based on minimum, G-aberration. J. Statist. Plann. Inference, 124, 219–230.
  • Lin, D.K.J. (1993). A new class of supersaturated designs., Technometrics, 35, 28–31.
  • Lin, D.K.J. and Draper, N.R. (1992). Projection properties of Plackett and Burman designs., Technometrics, 34, 423–428.
  • Liu, M.Q., Fang, K.T. and Hickernell, F.J. (2006). Connections among different criteria for asymmetrical fractional factorial designs., Statist. Sinica, 16, 1285-1297.
  • Loeppky, J.L., Bingham, D. and Sitter R.R. (2006). Constructing non-regular robust parameter designs., J. Statist. Plann. Inference, 136, 3710-3729.
  • Loeppky, J.L., Sitter, R.R. and Tang, B. (2007). Nonregular designs with desirable projection properties., Technometrics, 49, 454-467.
  • Ma, C.X. and Fang, K.T. (2001). A note on generalized aberration in factorial designs., Metrika, 53, 85–93.
  • MacWilliams, F.J. and Sloane, N.J.A. (1977)., The Theory of Error-correcting Codes. Amsterdam: North-Holland.
  • Mandal, A. and Mukerjee, R. (2005). Design efficiency under model uncertainty for nonregular fractions of general factorials., Statist. Sinica, 15, 697-707.
  • Mee, R.W. (2004). Efficient two-level designs for estimating main effects and two-factor interactions., J. Quality Technology, 36, 400–412.
  • Meyer, R.D., Steinberg, D.M. and Box, G. (1996). Follow-up designs to resolve confounding in multifactor experiments., Technometrics, 38, 303-313.
  • Montgomery, D.C. (2005)., Design and analysis of experiments. 6th ed. New York: Wiley.
  • Mukerjee, R. and Wu, C.F.J. (2006)., A Modern Theory of Factorial Designs. New York: Springer.
  • Myers, R.H., Montgomery, D.C., and Anderson-Cook, C.M. (2009)., Response Surface Methodology: Process and Product Optimization Using Designed Experiments, 3rd ed. New York: Wiley.
  • Owen, A.B. (1994). Controlling correlations in Latin hypercube samples., J. Amer. Statist. Assoc., 89, 1517–1522.
  • Paley, R.E.A.C. (1933). On orthogonal matrices., J. Math. Phys., 12, 311–320.
  • Phoa, F.K.H. and Xu, H. (2009). Quarter-fraction factorial designs constructed via quaternary codes., Ann. Statist., in press.
  • Phoa, F.K.H., Pan, Y.-H. and Xu, H. (2009). Analysis of supersaturated designs via the Dantzig selector., J. Statist. Plann. Inference, 139, 2362–2372.
  • Plackett, R.L. and Burman, J.P. (1946). The design of optimum multifactorial experiments., Biometrika, 33, 305–325.
  • Qin, H. and Ai, M. (2007). A note on the connection between uniformity and generalized minimum aberration., Statistical Papers, 48, 491-502.
  • Qin, H. and Fang, K.T. (2004). Discrete discrepancy in factorial designs., Metrika, 60, 59-72.
  • Qin, H., Zou, N. and Chatterjee, K. (2009). Connection between uniformity and minimum moment aberration., Metrika, 70, 79-88.
  • Rao, C.R. (1947). Factorial experiments derivable from combinatorial arrangements of arrays., J. Roy. Statist. Soc. Ser. B, 9, 128–139.
  • Rao, C.R. (1973). Some combinatorial problems of arrays and applications to design of experiments., Survey of combinatorial theory, Ed. J. N. Srivastava, pp. 349–359. Amsterdam: North-Holland.
  • Sacks, J., Welch, W.J., Mitchell, T.J. and Wynn, H.P. (1989). Design and analysis of computer experiments (with discussion)., Statistical Science, 4, 409–435.
  • Santner, T.J., Williams, B.J. and Notz, W.I. (2003)., The Design and Analysis of Computer Experiments. New York: Springer.
  • Stufken, J. and Tang, B. (2007). Complete enumeration of two-level orthogonal arrays of strength, d with d+2 constraints. Ann. Statist., 35, 793–814.
  • Suen, C., Chen, H. and Wu, C.F.J. (1997). Some identities on, qnm designs with application to minimum aberration designs. Ann. Statist. 25 1176–1188.
  • Sun, D.X. and Wu, C.F.J. (1993). Statistical properties of Hadamard matrices of order 16., Quality Through Engineering Design, Ed. W. Kuo, pp. 169–179. New York: Elsevier.
  • Sun, D.X., Li, W. and Ye, K.Q. (2002). An algorithm for sequentially constructing nonisomorphic orthogonal designs and its applications. Technical report SUNYSB-AMS-02-13, Department of Applied Mathematics and Statistics, SUNY at Stony, Brook.
  • Taguchi, G. (1987)., System of Experimental Design. White Plain, New York: UNIPUB.
  • Tang, B. (1993). Orthogonal array-based Latin hypercubes., J. Amer. Statist. Assoc., 88, 1392–1397.
  • Tang, B. (2001). Theory of, J-characteristics for fractional factorial designs and projection justification of minimum G2-aberration. Biometrika, 88, 401–407.
  • Tang, B. (2006). Orthogonal arrays robust to nonnegligible two-factor interactions., Biometrika, 93, 137–146.
  • Tang, B. and Deng, L.Y. (1999). Minimum, G2-aberration for non-regular fractional factorial designs. Ann. Statist., 27, 1914–1926.
  • Tang, B. and Deng, L.-Y. (2003). Construction of generalized minimum aberration designs of 3, 4 and 5 factors., J. Statist. Plann. Inference, 113, 335–340.
  • Tang, B. and Wu, C.F.J. (1996). Characterization of minimum aberration, 2nm designs in terms of their complementary designs. Ann. Statist. 24 2549–2559.
  • Telford, J.K. (2007). A brief introduction to design of experiments., Johns Hopkins APL Technical Digest, 27, 224–232.
  • Tsai, P.-W., Gilmour, S.G. and Mead, R. (2000). Projective three-level main effects designs robust to model uncertainty., Biometrika, 87, 467–475.
  • Tsai, P.-W., Gilmour, S.G. and Mead, R. (2004). Some new three-level orthogonal main effects plans robust to model uncertainty., Statist. Sinica, 14, 1075–1084.
  • Wang, J.C. and Wu, C.F.J. (1995). A hidden projection property of Plackett-Burman and related designs., Statist. Sinica, 5, 235–250.
  • Westfall, P.H., Young, S.S. and Lin, D.K.J. (1998). Forward selection error control in the analysis of supersaturated designs., Statist. Sinica, 8, 101-117.
  • Wu, C.F.J. (1993). Construction of supersaturated designs through partially aliased interactions., Biometrika, 80, 661–669.
  • Wu, C.F.J. and Hamada, M. (2000)., Experiments: Planning, Analysis and Parameter Design Optimization. New York: Wiley.
  • Xu, H. (2002). An algorithm for constructing orthogonal and nearly-orthogonal arrays with mixed levels and small runs., Technometrics, 44, 356–368.
  • Xu, H. (2003). Minimum moment aberration for nonregular designs and supersaturated designs., Statist. Sinica, 13, 691–708.
  • Xu, H. (2005a). Some nonregular designs from the Nordstrom and Robinson code and their statistical properties., Biometrika, 92, 385–397.
  • Xu, H. (2005b). A catalogue of three-level regular fractional factorial designs., Metrika, 62, 259–281.
  • Xu, H. (2006). Blocked regular fractional factorial designs with minimum aberration., Ann. Statist., 34, 2534–2553.
  • Xu, H. (2009). Algorithmic construction of efficient fractional factorial designs with large run sizes., Technometrics, in press.
  • Xu, H. and Cheng, C. -S. (2008). A complementary design theory for doubling., Ann. Statist., 36, 445-457.
  • Xu, H. and Deng, L.Y. (2005). Moment aberration projection for nonregular fractional factorial designs., Technometrics, 47, 121–131.
  • Xu, H. and Lau, S. (2006). Minimum aberration blocking schemes for two- and three-level fractional factorial designs., J. Statist. Plann. Inference, 136, 4088–4118.
  • Xu, H. and Wong, A. (2007). Two-level nonregular designs from quaternary linear codes., Statist. Sinica, 17, 1191–1213.
  • Xu, H. and Wu, C.F.J. (2001). Generalized minimum aberration for asymmetrical fractional factorial designs., Ann. Statist., 29, 1066–1077.
  • Xu, H. and Wu, C.F.J. (2005). Construction of optimal multi-level supersaturated designs., Ann. Statist., 33, 2811–2836.
  • Xu, H., Cheng, S.W. and Wu, C.F.J. (2004). Optimal projective three-level designs for factor screening and interaction detection., Technometrics, 46, 280–292.
  • Yang, G. and Butler, N.A. (2007). Nonregular two-level designs of resolution IV or more containing clear two-factor interactions., Statist. Probab. Lett., 77, 566-575.
  • Ye, K.Q. (2003). Indicator functions and its application in two-level factorial designs., Ann. Statist., 31, 984–994.
  • Ye, K.Q. (2004). A note on regular fractional factorial designs., Statist. Sinica, 14, 1069–1074.
  • Yuan, M., Joseph, V.R. and Lin, Y. (2007). An efficient variable selection approach for analyzing designed experiments., Technometrics, 49, 430-439.
  • Zhang, A., Fang, K.T., Li, R. and Sudjianto, A. (2005). Majorization framework for balanced lattice designs., Ann. Statist., 33, 2837-2853.