Statistical Science

Comment: Gibbs Sampling, Exponential Families, and Orthogonal Polynomials

Galin L. Jones and Alicia A. Johnson

Full-text: Open access

Article information

Source
Statist. Sci., Volume 23, Number 2 (2008), 183-186.

Dates
First available in Project Euclid: 21 August 2008

Permanent link to this document
https://projecteuclid.org/euclid.ss/1219339109

Digital Object Identifier
doi:10.1214/08-STS252C

Zentralblatt MATH identifier
1327.62063

Citation

Jones, Galin L.; Johnson, Alicia A. Comment: Gibbs Sampling, Exponential Families, and Orthogonal Polynomials. Statist. Sci. 23 (2008), no. 2, 183--186. doi:10.1214/08-STS252C. https://projecteuclid.org/euclid.ss/1219339109


Export citation

References

  • Baxendale, P. H. (2005). Renewal theory and computable convergence rates for geometrically ergodic Markov chains. Ann. Appl. Probab. 15 700–738.
  • Flegal, J. M., Haran, M. and Jones, G. L. (2008). Markov chain Monte Carlo: Can we trust the third significant figure? Statist. Sci. To appear.
  • Hobert, J. P. and Robert, C. P. (2004). A mixture representation of π with applications in Markov chain Monte Carlo and perfect sampling. Ann. Appl. Probab. 14 1295–1305.
  • Jones, G. L. (2004). On the Markov chain central limit theorem. Probab. Surv. 1 299–320.
  • Jones, G. L., Haran, M., Caffo, B. S. and Neath, R. (2006). Fixed-width output analysis for Markov chain Monte Carlo. J. Amer. Statist. Assoc. 101 1537–1547.
  • Jones, G. L. and Hobert, J. P. (2001). Honest exploration of intractable probability distributions via Markov chain Monte Carlo. Statist. Sci. 16 312–334.
  • Jones, G. L. and Hobert, J. P. (2004). Sufficient burn-in for Gibbs samplers for a hierarchical random effects model. Ann. Statist. 32 784–817.
  • Kendall, W. S. (2004). Geometric ergodicity and perfect simulation. Electron. Commun. Probab. 9 140–151.
  • Latuszynski, K. (2008). MCMC (ɛ-α)-approximation under drift condition with application to Gibbs samplers for a hierarchical random effects model. Preprint.
  • Roberts, G. O. and Rosenthal, J. S. (2004). General state space Markov chains and MCMC algorithms. Probab. Surv. 1 20–71.
  • Roberts, G. O. and Tweedie, R. L. (1999). Bounds on regeneration times and convergence rates for Markov chains. Stochastic Process. Appl. 80 211–229.
  • Rosenthal, J. S. (1995). Minorization conditions and convergence rates for Markov chain Monte Carlo. J. Amer. Statist. Assoc. 90 558–566.