Pacific Journal of Mathematics

Isomorphic Banach-Stone theorems and isomorphisms which are close to isometries.

Ehrhard Behrends

Article information

Source
Pacific J. Math., Volume 133, Number 2 (1988), 229-250.

Dates
First available in Project Euclid: 8 December 2004

Permanent link to this document
https://projecteuclid.org/euclid.pjm/1102689470

Mathematical Reviews number (MathSciNet)
MR941920

Zentralblatt MATH identifier
0618.46018

Subjects
Primary: 46B20: Geometry and structure of normed linear spaces

Citation

Behrends, Ehrhard. Isomorphic Banach-Stone theorems and isomorphisms which are close to isometries. Pacific J. Math. 133 (1988), no. 2, 229--250. https://projecteuclid.org/euclid.pjm/1102689470


Export citation

References

  • [I] E. M. Alfsen and E. G. Effros, Structure inreal Banach spaces I, II, Ann.of Math., 96(1972), 98-173.
  • [2] D. Amir, On isomorphisms of continuous function spaces, Israel J. Math., 3 (1965), 205-210.
  • [3] E. Behrends, On the Banach-Stone theorem, Math. Annalen, 233 (1978), 261- 272.
  • [4] E. Behrends,M-Structure and The Banach-Stone Theorem, Lecture Notes in Math- ematics 736, Springer-Verlag 1979.
  • [5] E. Behrends,How toobtain vector-valued Banach-Stone theorems by usingM-struc- ture methods, Math. Annalen, 261 (1982), 387-398.
  • [6] E. Behrends, Multiplier representations and an application tothe problem whether AXdetermines A and/or X,Math. Scand., 52 (1983), 117-144.
  • [7] E. Behrends and M. Cambern, On isomorphic Banach-Stone theorems, (to ap- pear: Studia Math.).
  • [8] Y. Benyamini, Small into-isomorphismsbetweenspaces of continuous functions, Proc. Amer. Math. Soc, 83 (1981), 479-485.
  • [9] M. Cambern, On isomorphisms with small bound, Proc. Amer. Math. Soc, 18 (1967), 1062-1066.
  • [10] M. Cambern,Isomorphisms ofC0(Y) onto C(X), Pacific J. Math., 35 (1970), 307- 312.
  • [II] M. Cambern,Isomorphisms of spacesofnorm-continuousfunctions, Pacific J. Math., 116(1985), 243-254.
  • [12] H. B.Cohen, A bound-two isomorphism between C(X) Banach spaces, Proc. Amer. Math. Soc, 50 (1975), 215-217.
  • [13] M. M. Day, Normed Linear Spaces, 3rd ed., Springer-Verlag, 1973.
  • [14] J. Globevnik, On complex strict and uniform convexity, Proc Amer. Math. Soc, 47(1975), 175-178.
  • [15] K. Jarosz, A generalization of the Banach-Stone theorem, Studia Math., 73 (1982), 33-39.
  • [16] K. Jarosz, Multipliers in complex Banach spaces and structure of the unit ball, preprint.
  • [17] K. Jarosz, Perturbationsof BanachAlgebras, Lecture Notes in Mathematics 1120, Springer-Verlag 1985.
  • [18] J. Lindenstrauss and L. Tzafriri, Classical Banach Spaces I, Springer-Verlag, 1977.
  • [19] G. Wodinski, Multiplikatorenin komplexen Banachrumen, Dissertation, Freie Universitat Berlin, 1986.