Pacific Journal of Mathematics

Isoperimetric inequalities for automorphism groups of free groups.

Allen Hatcher and Karen Vogtmann

Article information

Source
Pacific J. Math., Volume 173, Number 2 (1996), 425-441.

Dates
First available in Project Euclid: 6 December 2004

Permanent link to this document
https://projecteuclid.org/euclid.pjm/1102365632

Mathematical Reviews number (MathSciNet)
MR1394399

Zentralblatt MATH identifier
0862.20030

Subjects
Primary: 20F32
Secondary: 57M07: Topological methods in group theory

Citation

Hatcher, Allen; Vogtmann, Karen. Isoperimetric inequalities for automorphism groups of free groups. Pacific J. Math. 173 (1996), no. 2, 425--441. https://projecteuclid.org/euclid.pjm/1102365632


Export citation

References

  • [A] J. Alonso, Inegalitesisoperimetriques et quasi-isometries, C.R. Acad. Sci. Paris, 311(1) (1990), 761-764.
  • [AB] J. Alonso and M. Bridson, Semihyperbolic groups, Proc. London Math. Soc, 70(1) (1995), 56-114.
  • [BV] M. Bridson and K. Vogtmann, On the geometry of the group of automorphismof a free group,Bull. London Math. Soc, 27 (1995), 544-552.
  • [CV] M. Culler and K. Vogtmann, Moduliof graphs and automorphismsof free groups, Invent. Math, 84 (1986), 91-119.
  • [ECHLPT] D. Epstein, J. Cannon, D. Holt, S. Levy, M. Paterson and W. Thurston, Word Processingin Groups, London, Jones and Bartlett, (1992).
  • [Ge] S.M. Gersten, The automorphism groupof afreegroupis not a CAT(O) group,Proc. A.M.S., 121(4) (1994), 999-1002.
  • [Ge2] S.M. Gersten, Isoperimetric and isodiametric functions of finite presentations, in Geo- metric Group Theory, ed. by G. Niblo and M. Roller, London Math Soc. Lecture Notes, Cambridge University Press, 181(2) (1993), 79-96.
  • [Gh] E. Ghys, Les groupeshyperboliques, Seminaire Bourbaki, 722 (1989-90).
  • [Gr] M. Gromov, Hyperbolic groups, in Essays in Group Theory, ed. by S. M. Gersten, M.S.R.I., Springer-Verlag, 8 (1987), 75-263.
  • [Gr2] M. Gromov, Asymptotic invariants of groups, in Geometric Group Theory,ed. by G. Niblo and M. Roller, London Math Soc. Lecture Notes, Cambridge University Press, 181(2) (1993).
  • [Hal] J. Harer, Stability for the homology of mapping class groups of orientable surfaces, Annals of Math., 121(2) (1985), 2215-249.
  • [Ha2] J. Harer, The virtual cohomological dimensionof the mapping class group of an ori- ented surface,Invent. Math., 84 (1986), 157-176.
  • [H] A. Hatcher, Homological stability for automorphism groupsof freegroups, Comment. Math. Helv., 70 (1995), 39-62.
  • [H2] A. Hatcher, On triangulations of surfaces, Top. and its Appl., 40 (1991), 189-194.
  • [L] F. Laudenbach, Topologie de la dimension trois: homotopie et isotopie, Asterisque
  • [L2] F. Laudenbach, Sur les 2-spheres d'une variete de dimension 3, Annals of Math., 97 (1973), 57-81.
  • [Ml] L. Mosher, Mapping class groups are automatic, Math.Res.Letters, 1(2) (1994) 249-256.
  • [M2] L. Mosher, Mapping class groups are automatic, Annals of Math., 142 (1995), 303-384.
  • [S] J.-P. Serre, Arbres, amalgames, SL2, Asterisque, 46, Soc. Math. Prance (1977).