Proceedings of the Japan Academy, Series A, Mathematical Sciences

Zeta extensions

Nobushige Kurokawa and Masato Wakayama

Full-text: Open access

Abstract

In the papers [KW2, KW3] we introduced and studied a new type of the Selberg zeta function called by a higher Selberg zeta function. We have established the analytic properties, especially the functional equation of the higher Selberg zeta functions in [KW3]. Motivated by this study of higher Selberg zeta functions we formulate the problem for general zeta functions which have the Euler products and discuss their general features.

Article information

Source
Proc. Japan Acad. Ser. A Math. Sci. Volume 78, Number 7 (2002), 126-130.

Dates
First available in Project Euclid: 23 May 2006

Permanent link to this document
https://projecteuclid.org/euclid.pja/1148392634

Digital Object Identifier
doi:10.3792/pjaa.78.126

Mathematical Reviews number (MathSciNet)
MR1930216

Zentralblatt MATH identifier
1015.11043

Subjects
Primary: 11M35: Hurwitz and Lerch zeta functions 11M36: Selberg zeta functions and regularized determinants; applications to spectral theory, Dirichlet series, Eisenstein series, etc. Explicit formulas

Keywords
Riemann's zeta function Selberg's zeta function Euler product functional equations

Citation

Kurokawa, Nobushige; Wakayama, Masato. Zeta extensions. Proc. Japan Acad. Ser. A Math. Sci. 78 (2002), no. 7, 126--130. doi:10.3792/pjaa.78.126. https://projecteuclid.org/euclid.pja/1148392634.


Export citation

References

  • Cohen, H., and Lenstra, H. W.: Heuristics on class groups of number fields. Lecture Notes in Math., no.,1068, Springer-Verlag, Berlin-Heidelberg-New York-Tokyo, pp. 33–62 (1984).
  • Kurokawa, N., and Koyama, S.: Multiple sine functions. Forum. Math. (To appear).
  • Kurokawa, N., Ochiai, H., and Wakayama, M.: Zetas and multiple trigonometry. J. Ramanujan Math. Soc., 17, 101–113 (2002).
  • Kurokawa, N., and Wakayama, M.: On $\zeta(3)$. J. Ramanujan Math. Soc., 16, 205–214 (2001).
  • Kurokawa, N., and Wakayama, M.: A comparison between the sum over Selberg's zeroes and Riemann's zeroes. (2002). (Preprint).
  • Kurokawa, N., and Wakayama, M.: Higher Selberg zeta functions. (2002). (Preprint).
  • Zagier, D.: Zetafunktionen und quadratische körper. Springer-Verlag, Berlin-Heidelberg (1981).