Proceedings of the Japan Academy, Series A, Mathematical Sciences

On a Lehmer problem concerning Euler's totient function

Aleksander Grytczuk and Marek Wójtowicz

Full-text: Open access


Let $M$ be a positive integer with $M > 4$, and let $\varphi$ denote Euler's totient function. If a positive integer $n$ satisfies the Diophantine equation (*) $M \varphi(n) = n - 1$, then the number of prime factors of $n$ is much bigger than $M$. Moreover, the set of all squarefree integers which do not fulfil (*) contains ``nice'' subsets.

Article information

Proc. Japan Acad. Ser. A Math. Sci., Volume 79, Number 8 (2003), 136-138.

First available in Project Euclid: 18 May 2005

Permanent link to this document

Digital Object Identifier

Mathematical Reviews number (MathSciNet)

Zentralblatt MATH identifier

Primary: 11A25: Arithmetic functions; related numbers; inversion formulas

Lehmer problem Euler totient function


Grytczuk, Aleksander; Wójtowicz, Marek. On a Lehmer problem concerning Euler's totient function. Proc. Japan Acad. Ser. A Math. Sci. 79 (2003), no. 8, 136--138. doi:10.3792/pjaa.79.136.

Export citation


  • Cohen, G. L., and Hagis, P. Jr.: On the number of prime factors of $n$ if $\varphi(n)\,|\, n-1$. Nieuw Arch. Wisk. (3), 28, 177–185 (1980).
  • Graham, R. L., Rothschild, B. L., and Spencer, J. H.: Ramsey Theory. John Wiley & Sons, Inc., New York (1980).
  • Hagis, P. Jr.: On the equation $M\cdot \varphi(n) = n-1$. Nieuw Arch. Wisk. (4), 6, 225–261 (1988).
  • Kishore, M.: On the number of distinct prime factors of $n$ for which $\varphi(n)\,|\, n-1$. Nieuw Arch. Wisk. (3), 25, 48–53 (1997).
  • Lehmer, D. H.: On Euler's totient function. Bull. Amer. Math. Soc., 38, 745–751 (1932).
  • Lieuwens, E.: Do there exist composite $M$ for which $k\varphi(M) = M-1$ holds? Nieuw Arch. Wisk. (3), 18, 165–169 (1970).
  • Pomerance, C.: On composite $n$ for which $\varphi (n)|n-1$. II. Pacific J. Math., 69, 177–186 (1977).
  • Siva Rama Prasad, V., and Rangamma, M.: On composite $n$ satisfying a problem of Lehmer. Indian J. Pure Appl. Math., 16, 1244–1248 (1985).
  • Robin, G.: Estimation de la fonction de Tchebychef $\theta$ sur le $k$-ième nombre premier et grandes valeurs de la fonction $\omega(n)$ nombre de diviseurs premiers de $n$. Acta Arith., 42, 367–389 (1983).
  • Rosser, J. B.: The $n$-th prime is greater than $n\log n$. Proc. London Math. Soc., 45, 21–44 (1938).
  • Subbarao, M. V., and Siva Rama Prasad, V.: Some analogues of a Lehmer problem on the totient function. Rocky Mountain J. Math., 15, 609–620 (1985).
  • Wall, D. W.: Conditions for $\varphi (N)$ to properly divide $N-1$. A Collection of Manuscripts Related to the Fibonacci Sequence (eds. Hoggatt, V. E., and Bicknell-Johnson, M.), 18th Anniv. Vol., Fibonacci Assoc., Santa Clara, pp. 205–208 (1980).