Osaka Journal of Mathematics

Asymptotic behavior of solutions to the compressible Navier-Stokes equation in a cylindrical domain

Yoshiyuki Kagei and Takumi Nukumizu

Full-text: Open access

Abstract

Asymptotic behavior of solutions to the compressible Navier-Stokes equation around a given constant state is investigated on a cylindrical domain in $\mathbf{R}^{3}$, under the no slip boundary condition for the velocity field. The $L^{2}$ decay estimate is established for the perturbation from the constant state. It is also shown that the time-asymptotic leading part of the perturbation is given by a function satisfying a 1 dimensional heat equation. The proof is based on an energy method and asymptotic analysis for the associated linearized semigroup.

Article information

Source
Osaka J. Math., Volume 45, Number 4 (2008), 987-1026.

Dates
First available in Project Euclid: 26 November 2008

Permanent link to this document
https://projecteuclid.org/euclid.ojm/1227708830

Mathematical Reviews number (MathSciNet)
MR2493967

Zentralblatt MATH identifier
1161.35038

Subjects
Primary: 35Q30: Navier-Stokes equations [See also 76D05, 76D07, 76N10]
Secondary: 76N15: Gas dynamics, general

Citation

Kagei, Yoshiyuki; Nukumizu, Takumi. Asymptotic behavior of solutions to the compressible Navier-Stokes equation in a cylindrical domain. Osaka J. Math. 45 (2008), no. 4, 987--1026. https://projecteuclid.org/euclid.ojm/1227708830


Export citation

References

  • G.P. Galdi: An Introduction to the Mathematical Theory of the Navier-Stokes Equations, Vol. I, Springer, New York, 1994.
  • D. Hoff and K. Zumbrun: Multi-dimensional diffusion waves for the Navier-Stokes equations of compressible flow, Indiana Univ. Math. J. 44 (1995), 603--676.
  • D. Hoff and K. Zumbrun: Pointwise decay estimates for multidimensional Navier-Stokes diffusion waves, Z. Angew. Math. Phys. 48 (1997), 597--614.
  • Y. Kagei: Resolvent estimates for the linearized compressible Navier-Stokes equation in an infinite layer, Funkcial. Ekvac. 50 (2007), 287--337.
  • Y. Kagei: Asymptotic behavior of the semigroup associated with the linearized compressible Navier-Stokes equation in an infinite layer, Publ. Res. Inst. Math. Sci. 43 (2007), 763--794.
  • Y. Kagei: Large time behavior of solutions to the compressible Navier-Stokes equation in an infinite layer, Hiroshima Math. J. 38 (2008), 95--124.
  • Y. Kagei and T. Kobayashi: On large-time behavior of solutions to the compressible Navier-Stokes equations in the half space in $\mathbf{R}^{3}$, Arch. Ration. Mech. Anal. 165 (2002), 89--159.
  • Y. Kagei and T. Kobayashi: Asymptotic behavior of solutions of the compressible Navier-Stokes equations on the half space, Arch. Ration. Mech. Anal. 177 (2005), 231--330.
  • T. Kato: Perturbation Theory for Linear Operators, Springer-Verlag, Berlin, Heidelberg, New York, 1980.
  • S. Kawashima: Systems of a hyperbolic-parabolic composite type, with applications to the equations of magnetohydrodynamics, Ph.D. Thesis, Kyoto University (1983).
  • S. Kawashima, A. Matsumura and T. Nishida: On the fluid-dynamical approximation to the Boltzmann equation at the level of the Navier-Stokes equation, Comm. Math. Phys. 70 (1979), 97--124.
  • T. Kobayashi: Some estimates of solutions for the equations of motion of compressible viscous fluid in the three-dimensional exterior domain, J. Differential Equations 184 (2002), 587--619.
  • T. Kobayashi and Y. Shibata: Decay estimates of solutions for the equations of motion of compressible viscous and heat-conductive gases in an exterior domain in $\mathbf{R}^{3}$, Comm. Math. Phys. 200 (1999), 621--659.
  • T. Kobayashi and Y. Shibata: Remark on the rate of decay of solutions to linearized compressible Navier-Stokes equations, Pacific J. Math. 207 (2002), 199--234.
  • A. Matsumura and T. Nishida: The initial value problem for the equations of motion of compressible viscous and heat-conductive fluids, Proc. Japan Acad. Ser. A Math. Sci. 55 (1979), 337--342.
  • A. Matsumura and T. Nishida: The initial value problem for the equations of motion of viscous and heat-conductive gases, J. Math. Kyoto Univ. 20 (1980), 67--104.
  • A. Matsumura and T. Nishida: Initial-boundary value problems for the equations of motion of compressible viscous and heat-conductive fluids, Comm. Math. Phys. 89 (1983), 445--464.