Nagoya Mathematical Journal

A vanishing theorem

F. Laytimi and W. Nahm

Full-text: Open access

Abstract

The main result is a general vanishing theorem for the Dolbeault cohomology of an ample vector bundle obtained as a tensor product of exterior powers of some vector bundles. It is also shown that the conditions for the vanishing given by this theorem are optimal for some parameter values.

Article information

Source
Nagoya Math. J. Volume 180 (2005), 35-43.

Dates
First available in Project Euclid: 14 December 2005

Permanent link to this document
https://projecteuclid.org/euclid.nmj/1134569894

Mathematical Reviews number (MathSciNet)
MR2186667

Zentralblatt MATH identifier
1096.14010

Subjects
Primary: 14F17: Vanishing theorems [See also 32L20]

Citation

Laytimi, F.; Nahm, W. A vanishing theorem. Nagoya Math. J. 180 (2005), 35--43.https://projecteuclid.org/euclid.nmj/1134569894


Export citation

References

  • Y. Akizuki and S. Nakano, Note on Kodaira-Spencer's proof of Lefschetz theorems , Proc. Jap. Acad., 30 (1954), 266–272.
  • R. Bott, Homogeneous vector bundles , Ann. Math., 66 (1957), 203–248.
  • B. Demazure, A very simple proof of Bott's theorem , Invent. Math., 33 (1976), 271–220.
  • L. Ein and R. Lazarsfeld, Syzygies and Koszul cohomology of smooth projective varieties of arbitrary dimension , Invent. Math., 111 (1993), 51–67.
  • W. Fulton and J. Harris, Representation theory, a first course, Graduate texts in Mathematics, Springer Verlag (1991).
  • F. Laytimi, On degeneracy loci , International Journal of Mathematics, 6 vol. 7 (1998), 203–220.
  • F. Laytimi and W. Nahm, A generalization of Le Potier's vanishing theorem , Manuscripta math., 113 (2004), 165–189.
  • Le Potier, Cohomologie de la Grassmannienne à valeurs dans les puissances extérieures et symetriques du fibré universel , Math. Ann., 226 (1977), 257–270.
  • I. G. Macdonald, Symmetrics Functions and Hall polynomials, Claredon Press, Oxford (1976).
  • L. Manivel, Un théorème d'annulation pour les puissances extérieures d'un fibré ample , J. reine angew. Math., 422 (1991), 91–116.
  • L. Manivel, théorèmes d'annulation pour les fibrés associés à un fibré ample , Scuola superiore Pisa (1992), 515–565.
  • D. Snow, Cohomology of twisted holomorphic forms on Grassmann manifolds and quadric hypersurfaces , Math. Ann., 276 (1986), 159–176.
  • A. J. Sommese, Submanifold of Abelian Varieties , Math. Ann., 233 (1978), 229–256.