Nagoya Mathematical Journal

On algebraic groups defined by Jordan pairs

Ottmar Loos

Full-text: Open access

Article information

Source
Nagoya Math. J., Volume 74 (1979), 23-66.

Dates
First available in Project Euclid: 14 June 2005

Permanent link to this document
https://projecteuclid.org/euclid.nmj/1118785795

Mathematical Reviews number (MathSciNet)
MR0535959

Zentralblatt MATH identifier
0424.17001

Subjects
Primary: 17C35
Secondary: 20G15: Linear algebraic groups over arbitrary fields

Citation

Loos, Ottmar. On algebraic groups defined by Jordan pairs. Nagoya Math. J. 74 (1979), 23--66. https://projecteuclid.org/euclid.nmj/1118785795


Export citation

References

  • [1] S. Anantharaman, Schemas en groupes, espaces homogenes, et espaces algebriques sur une base de dimension 1. Bull. Soc.Math. France, Meroire 33 (1973), 5-79.
  • [2] A. Borel, Linear algebraic groups. W.A. Benjamin, New York-Amsterdam 1969.
  • [3] A. Borel andJ. Tits, Groupes reductifs. Publ. Math. IHES No. 27 (1965), 55-150.
  • [4] A. Borel andJ. Tits, Homomorphismes abstraits de groupes algebriques simples. Ann.of Math. 97 (1973), 499-571.
  • [5] M. Demazure and P. Gabriel, Groupes algebriques. Masson, Paris 1970.
  • [6] J. Faulkner, Octonion planes defined by quadratic Jordan algebras. Memoirs Amer. Math. Soc. No.104, 1970.
  • [7] A. Grothendieck and M. Demazure, Schemas en groupes. Springer Lecture notes 151-153, 1970. (Referred to as SGA3)
  • [8] A. Grothendieck and J. Dieudonne,Elements de geometrie algebrique. Publ. Math. IHES 1960. (Referred to as EGA)
  • [9] S. Helgason, Differential Geometry and Symmetric Spaces. Academic Press, 1962.
  • [10] M. Koecher, Imbedding of Jordan algebras into Lie algebras I, II. Amer. J. Math. 89 (1967), 787-816, and 90 (1968), 476-510.
  • [11] M. Koecher, ber eine Gruppe von rationalen Abbildungen. Inv. Math. 3 (1967), 136- 171.
  • [12] M. Koecher, Gruppen und Lie-Algebren von rationalen Funktionen. Math. Z. 109 (1969), 349-392.
  • [13] M. Koecher, An elementary approach to bounded symmetric domains. Lecture notes, Rice University, Houston 1969.
  • [14] O. Loos, Representations of Jordan triples. Trans. Amer. Math. Soc. 185 (1973), 199-211.
  • [15] O. Loos, Jordan pairs. Springer Lecture notes No.460, 1975.
  • [16] O. Loos, Jordan pairs and bounded symmetric domains. Lecture notes, University of California, Irvine 1977.
  • [17] K. Meyberg, Jordan-Tripelsysteme und die Koecher-Konstruktion von Lie-Alge- bren. Math. Z. 115 (1970), 58-78.
  • [18] H. P. Petersson, Zur Arithmetik der Jordan-Paare. Math. Z. 147 (1976), 139- 161.
  • [19] N. Roby, Lois polynomes et lois formelles en theorie des modules. Ann. Scient. Ecole Norm. Sup. 3e serie, t.8O (1963), 213-348.
  • [20] T. A. Springer, Jordan algebras and algebraic groups. Springer Verlag 1973.
  • [21] J. Tits, Une classe d'algebres de Lie en relation avec les algebres de Jordan. Proc. Kon. Akad. Wet. Amst. 65 (1962), 530-535. Department of Mathematics University of British Columbia Institut fur Mathematik Universitdt Innsbruck Innsbruck, Austria