Nagoya Mathematical Journal

Structure of solutions to Fuchsian systems of partial differential equations

Takeshi Mandai and Hidetoshi Tahara

Full-text: Open access

Abstract

To a certain Volevič system of singular partial differential equations, called a Fuchsian system, all the solutions of the homogeneous equation in a complex domain are constructed and parametrized in a good way, without any assumption on the characteristic exponents.

Article information

Source
Nagoya Math. J., Volume 169 (2003), 1-17.

Dates
First available in Project Euclid: 27 April 2005

Permanent link to this document
https://projecteuclid.org/euclid.nmj/1114631808

Mathematical Reviews number (MathSciNet)
MR1962522

Zentralblatt MATH identifier
1049.35006

Subjects
Primary: 35A20: Analytic methods, singularities
Secondary: 33B30: Higher logarithm functions 35C15: Integral representations of solutions

Citation

Mandai, Takeshi; Tahara, Hidetoshi. Structure of solutions to Fuchsian systems of partial differential equations. Nagoya Math. J. 169 (2003), 1--17. https://projecteuclid.org/euclid.nmj/1114631808


Export citation

References

  • M. S. Baouendi and C. Goulaouic, Cauchy problems with characteristic initial hypersurface , Comm. Pure Appl. Math., 26 (1973), 455--475.
  • T. Mandai, The method of Frobenius to Fuchsian partial differential equations , J. Math. Soc. Japan, 52 (2000), 645--672.
  • M. Miyake, On Cauchy-Kowalevski's theorem for general systems , Publ. Res. Inst. Math. Sci., 15 (1979), 315--337.
  • H. Tahara, Fuchsian type equations and Fuchsian hyperbolic equations , Japan. J. Math. (N.S.), 5 (1979), 245--347.
  • --------, On a Volevič system of singular partial differential equations , J. Math. Soc. Japan, 34 (1982), 279--288.