Kodai Mathematical Journal

Euler systems, Iwasawa theory, and Selmer groups

Kazuya Kato

Full-text: Open access

Article information

Kodai Math. J., Volume 22, Number 3 (1999), 313-372.

First available in Project Euclid: 23 January 2006

Permanent link to this document

Digital Object Identifier

Mathematical Reviews number (MathSciNet)

Zentralblatt MATH identifier

Primary: 11G40: $L$-functions of varieties over global fields; Birch-Swinnerton-Dyer conjecture [See also 14G10]
Secondary: 11F67: Special values of automorphic $L$-series, periods of modular forms, cohomology, modular symbols 11F85: $p$-adic theory, local fields [See also 14G20, 22E50] 11R23: Iwasawa theory 19F15: Symbols and arithmetic [See also 11R37]


Kato, Kazuya. Euler systems, Iwasawa theory, and Selmer groups. Kodai Math. J. 22 (1999), no. 3, 313--372. doi:10.2996/kmj/1138044090. https://projecteuclid.org/euclid.kmj/1138044090

Export citation


  • [AV] ARTIN, M. AND VERDIER, J., Seminar on etale cohomology ofnumber fields, Wood Hole (1964).
  • [Be] BEILINSON, A., Higher regulators and values of L-functions, J. Soviet Math., 30 (1985 2036-2070.
  • [BK] BLOCH, S. AND KATO, K., l-functions and Tamagawa numbers of motives, The Gro thendieck Festschrift, vol.1, Birkhauser, 1990, 334-400.
  • [BO] BERTHELOT, P AND OGUS, A., Notes on Crystalline Cohomology, Princeton Univ. Press, 1978
  • [Bo] BOURBAKI, N., Groupes et Algebras de Lie, Elements de mathematique, 16, Hermann, 1960
  • [CE] CARTAN, H. AND EILENBERG, S., Homological Algebra, Princeton Math. Ser., 19, Princeto Univ. Press, 1956.
  • [De] DELIGNE, P., Laconjecture de Weil, I, Inst. Hautes Etudes Sci. Publ. Math., 43(1974), 273-307; II, ibid., 52 (1980), 137-252
  • [Fo] FONTAINE, J. -M., Sur certains types derepresentations /7-adiques dugroupe de Galois d'u corps local: constructuion d'un anneau de Barsotti-Tate, Ann. of Math., 115 (1982), 529-577
  • [Ja] JANNSEN, U., On the /-adic cohomology of varieties over number fields and its Galoi cohomology, Galois Group over Q, Springer, 1989, 315-360.
  • [Kai] KATO, K., Lectures on the approach to Iwasawa theory for Hasse-Weil L-functions vi BdR, Lecture Notes in Math., 1553, Springer, 1993, 50-163.
  • [Ka2] KATO, K., /?-adic Hodge theory and special values of zeta functions of elliptic cusp forms, i preparation.
  • [Koi] KOLYVAGIN, V. A., Fimteness of E(Q) and UI(E/Q) for a class of Weil curves, Izv. Acad Nauk SSSR, 52 (1988), 522-540, 670-671.
  • [Ko2] KOLYVAGIN, V A., Euler systems, The Grothendieck Festschrift, vol. 2, Birkhauser, 199 435-483.
  • [La] LAZARD, M., Groupes analytiques /?-adiques, Inst. Hautes Etudes Sci. Publ. Math., 2 (1965), 1-219.
  • [Ma] MAZUR, B., Notes on etale cohomology of number fields, Ann. Sci. Ecole. Norm. Sup., (1973), 521-556.
  • [MW] MAZUR, B. AND WILES, A., Class fields of abelian extensions of Q, Invent. Math., 7 (1984), 179-330.
  • [Pe] PERRIN-RIOU, B., Systemes d'Euler /?-adique et theoe d'lwasawa, to appear
  • [Rui] RUBIN, K., The main conjecture, Appendix to Lang, S., Cyclotomic Fields I and II, Grad Texts in Math., 121, Spnger, 1990, 397-420.
  • [R112] RUBIN, K., The "main conjecture" of Iwasawa theory for imaginary quadratic fields, Invent. Math., 103 (1991), 25-68
  • [R113] RUBIN, K., Stark units and Kolyvagin's "Euler systems", J. Reine Angew. Math., 42 (1992), 141-154.
  • [R114] RUBIN, K., Euler systems and modular elliptic curves, London Math. Soc. Lecture Not Ser., 254, Cambridge Univ. Press, Cambridge, 1998, 351-367.
  • [Sei] SERRE, J. -P., Corps Locaux, Hermann, 1960
  • [S2] SERRE, J. -P., Cohomologie Galoisienne, Lecture Notes in Math., 5, Spnger, 1964
  • [Se3] SERRE, J. -P., Sur les groupes de congruences des varietes, Izv. Akad. Nauk SSSR, 28 (1964 3-18, II, ibid., 35 (1971), 731-735.
  • [S4] SERRE, J. -P., Abelian /-adic Representations and Elliptic Curves, Benjamin, 1968
  • [Ta] TATE, J., On the conjectures of Birch and Swinnerton-Dyer and a geometric analog, Sem Bourbaki, 1965-66, n?306, Bemjamin, 1966.