Journal of the Mathematical Society of Japan

Combinatorial principles on $\bm{\omega_1}$, cardinal invariants of the meager ideal and destructible gaps

Teruyuki YORIOKA

Full-text: Open access


We show that (1) stick plus c o v > 1 implies the existence of a destructible gap and (2) $\clubsuit$ plus c o f = 1 implies the existence of a destructible gap.

Article information

J. Math. Soc. Japan, Volume 57, Number 4 (2005), 1217-1228.

First available in Project Euclid: 14 June 2006

Permanent link to this document

Digital Object Identifier

Mathematical Reviews number (MathSciNet)

Zentralblatt MATH identifier

Primary: 03E05: Other combinatorial set theory 03E35: Consistency and independence results

$\clubsuit$ stick cardinal invariants of the meager ideal destructible gaps


YORIOKA, Teruyuki. Combinatorial principles on $\bm{\omega_1}$, cardinal invariants of the meager ideal and destructible gaps. J. Math. Soc. Japan 57 (2005), no. 4, 1217--1228. doi:10.2969/jmsj/1150287311.

Export citation


  • U. Abraham and S. Todorčević, Partition properties of $\omega_1$ compatible with CH, Fund. Math., 152 (1997), 165–180.
  • S. Broverman, J. Ginsburg, K. Kunen and F. Tall, Topologies determined by $\sigma$-ideals on $\omega_{1}$, Canad. J. Math., 30 (1978), 1360–1312.
  • J. Brendle, Cardinal invariants of the continuum and combinatorics on uncountable cardinals, Ann. Pure Appl. Logic, to appear.
  • A. Dow, More set-theory for topologists, Topology Appl., 64 (1995), 243–300.
  • I. Farah, OCA and towers in $\cP(\NN)/fin$, Comment. Math. Univ. Carolin., 37 (1996), 861–866.
  • S. Fuchino, S. Shelah and L. Soukup, Sticks and clubs, Ann. Pure Appl. Logic, 90 (1997), 57–77.
  • J. Hirschorn, Summable gaps, Ann. Pure Appl. Logic, 120 (2003), 1–63.
  • M. Hrušák, Life in Sacks model, Acta Univ. Carolin. Math. Phys., 42 (2001), 43–58.
  • K. Kunen, $(\kappa,\lambda^*)$-gaps under $MA$, handwritten note, 1976.
  • R. Laver, Linear orders in $(\omega)^\omega$ under eventual dominance, Logic Colloquium '78, North-Holland, 1979, 299–302.
  • J. Moore, M. Hrušák and M. Džamonja, Parametrized $\diamondsuit$ principles, Trans. Amer. Math. Soc., 356 (2004), 2281–2306.
  • A. Ostaszewski, On countably compact, perfectly normal spaces, J. London Math. Soc., 14 (1976), 505–516.
  • M. Scheepers, Gaps in $\omega^\omega$, In: Set Theory of the Reals, Proceedings of Israel Mathematical Conference, 6, 1993, 439–561.
  • S. Shelah, Proper and improper forcing, 2nd edition, Springer, 1998.
  • S. Shelah and J. Zapletal, Canonical models for $\aleph_1$-combinatorics, Ann. Pure Appl. Logic, 98 (1999), 217–259.
  • S. Todorčević, Partition Problems in Topology, Contemporary mathematics, 84, American Mathematical Society, Providence, Rhode Island, 1989.
  • S. Todorčvić, Coherent Sequences, to appear in the Handbook of Set Theory.
  • S. Todorčević and I. Farah, Some Applications of the Method of Forcing, Mathematical Institute, Belgrade and Yenisei, Moscow, 1995.
  • D. Velleman, Souslin trees constructed from morasses, Axiomatic set theory (Boulder, Colo., 1983), Contemp. Math., 31 (1984), 219–241.
  • T. Yorioka, The diamond principle for the uniformity of the meager ideal implies the existence of a destructible gap, Arch. Math. Logic, 44 (2005), 677–683.