Journal of Integral Equations and Applications

Numerical solution via Laplace transforms of a fractional order evolution equation

William Mclean and Vidar Thomée

Full-text: Open access

Article information

Source
J. Integral Equations Applications Volume 22, Number 1 (2010), 57-94.

Dates
First available in Project Euclid: 24 March 2010

Permanent link to this document
https://projecteuclid.org/euclid.jiea/1269437451

Digital Object Identifier
doi:10.1216/JIE-2010-22-1-57

Mathematical Reviews number (MathSciNet)
MR2607556

Zentralblatt MATH identifier
1195.65122

Keywords
Fractional order diffusion equation Laplace transformation resolvent quadrature spatially semidiscrete approximation finite elements

Citation

Mclean, William; Thomée, Vidar. Numerical solution via Laplace transforms of a fractional order evolution equation. J. Integral Equations Applications 22 (2010), no. 1, 57--94. doi:10.1216/JIE-2010-22-1-57. https://projecteuclid.org/euclid.jiea/1269437451


Export citation

References

  • N.Yu. Bakaev, V. Thomée and L.B. Wahlbin, Maximum-norm estimates for resolvents of elliptic finite element operators, Math. Comp. 72 (2003), 1597-1610.
  • W.J. Cody, Algorithm 715: specfun-A portable Fortran package of special function routines and test drivers, ACM Trans. Math. Software 19 (1993), 22-32 (http://www.netlib.org/specfun/).
  • M. Crouzeix and V. Thomée, The stability in $L_p$ and $W^1_p$ of the $L_2$-projection onto finite element function spaces, Math. Comp. 48 (1987), 521-532.
  • I.P. Gavrilyuk and V.L. Makarov, Exponentially convergent algorithms for the operator exponential with applications to inhomogeneous problems in Banach spaces, SIAM J. Numer. Anal. 43 (2005), 2144-2171.
  • R. Gorenflo, F. Mainardi, D. Moretti and P. Paradisi, Time fractional diffusion: A discrete random walk approach, Nonlinear Dynamics 29 (2002), 129-143.
  • B.I. Henry and S.L. Wearne, Fractional reaction-diffusion, Physica A 276 (2000), 448-455.
  • T.A.M. Langlands and B.I. Henry, The accuracy and stability of an implicit solution method for the fractional diffusion equation, J. Comp. Phys. 205 (2005), 719-736.
  • M. López-Fernandez and M. Palencia, On the numerical inversion of the Laplace transform of certain holomorphic mappings, Appl. Numer. Math. 51 (2004), 289-303.
  • M. López-Fernandez, C. Palencia and A. Schädle, A spectral order method for inverting sectorial Laplace transforms, SIAM J. Numer. Anal. 44 (2006), 1332-1350.
  • C. Lubich, I.H. Sloan, and V. Thomée, Nonsmooth data error estimates for approximations of an evolution equation with a positive type memory term, Math. Comp. 65 (1996), 1-17.
  • W. McLean and K. Mustapha, A second-order accurate numerical method for a fractional wave equation, Numer. Math. 105 (2007), 481-510.
  • W. McLean, I.H. Sloan, and V. Thomée, Time discretization via Laplace transformation of an integrodifferential equation of parabolic type, Numer. Math. 102 (2006), 497-522.
  • W. McLean and V. Thomée, Numerical solution of an evolution equation with a positive type memory term, J. Austral. Math. Soc. %Ser. B. 35 (1993), 23-70.
  • --------, Time discretization of an evolution equation via Laplace transforms, IMA J. Numer. Anal. 24 (2004), 439-463.
  • W. McLean, V. Thomée and L.B. Wahlbin, Discretization with variable time steps of an evolution equation with a positive-type memory term, J. Comput. Appl. Math. 69 (1996), 49-69.
  • R. Metzler and J. Klafter, The random walk's guide to anomalous diffusion: A fractional dynamics approach, Physics Reports 339 (2000), 1-77.
  • A. Pani and G. Fairweather, An $H^1$-Galerkin mixed finite element method for an evolution equation with a positive type memory term, SIAM J. Numer. Anal. 40 (2002) 1475-1490.
  • A. Pazy, Semigroups of linear operators and applications to partial differential equations, Springer-Verlag, New York, 1983.
  • M.J. Sanz-Serna, A numerical method for a partial integro-differential equation, SIAM J. Numer. Anal. 25 (1988), 319-327.
  • A.H. Schatz and L.B. Wahlbin, On the quasi-optimality in $L_\infty$ of the $H^1$-projection into finite element spaces, Math. Comp. 38 (1982), 1-22.
  • W.R. Schneider and W. Wyss, Fractional diffusion and wave equations, J. Math. Phys. 30 (1989), 134-144.
  • D. Sheen, I.H. Sloan and V. Thomée, A parallel method for time-discretization of parabolic equations based on contour integral representation and quadrature, Math. Comp. 69 (1999), 177-195.
  • --------, A parallel method for time-discretization of parabolic equations based on Laplace transformation and quadrature, IMA J. Numer. Anal. 23 (2003), 269-299.
  • B. Stewart, Generation of analytic semigroups by strongly elliptic operators, Trans. Amer. Math. Soc. 199 (1974), 141-161.
  • J.A.C. Weideman, Optimizing Talbot's contours for the inversion of the Laplace transform, SIAM J. Numer. Anal. 44 (2006), 2342-2362.
  • S.B. Yuste and L. Acedo, An explicit finite difference method and a new von Neumann-type stability analysis for fractional diffusion equations, SIAM J. Numer. Anal. 42 (2005), 1862-1874.
  • S.B. Yuste, L. Acedo and K. Lindenberg, Reaction front in $A+B\to C$ reaction-subdiffusion process, Physical Rev. E 69, %036126 (2004).