Journal of Differential Geometry

Convergence of the Allen-Cahn equation to Brakke's motion by mean curvature

Tom Ilmanen

Full-text: Open access

Article information

J. Differential Geom., Volume 38, Number 2 (1993), 417-461.

First available in Project Euclid: 26 June 2008

Permanent link to this document

Digital Object Identifier

Mathematical Reviews number (MathSciNet)

Zentralblatt MATH identifier

Primary: 58E12: Applications to minimal surfaces (problems in two independent variables) [See also 49Q05]
Secondary: 35K22 53A10: Minimal surfaces, surfaces with prescribed mean curvature [See also 49Q05, 49Q10, 53C42]


Ilmanen, Tom. Convergence of the Allen-Cahn equation to Brakke's motion by mean curvature. J. Differential Geom. 38 (1993), no. 2, 417--461. doi:10.4310/jdg/1214454300.

Export citation


  • [1] W. Allard, On the first variation of a varifold, Ann. of Math. (2) 95 (1972) 417-491.
  • [2] S. Allen and J. Cahn, A microscopic theory for antiphase boundary motion and its application to antiphase domain coarsening, Acta Metall. 27 (1979) 1084-1095.
  • [3] F. Almgren, Existence and regularity almost everywhere of solutions to elliptic variational problems among surfaces of varying topological type and singularity structure, Ann. of Math. (2) 87 (1968) 321-391.
  • [4] G. Barles, H. M. Soner, and P. E. Souganidis, Front propagation and phase field theory, SIAM J. Control Optim., to appear.
  • [5] K. Brakke, The motion of a surface by its mean curvature, Princeton University Press, Princeton, NJ, 1978.
  • [6] L. Bronsard and R. V. Kohn, On the slowness of phase boundary motion in one space dimension, preprint #13, Lefschetz Center, Brown University, 1989.
  • [7] L. Bronsard and R. V. Kohn, Motion by mean curvature as the singular limit of Ginzburg-Landaudynamics, J. Differential Equations 90 (1991) 211-237.
  • [8] J. Can* and R. Pego, Very slow phase separation in one dimension, Proc. Conf. on Phase Transitions (M. Rascle, ed.), 1987.
  • [9] J. Can* and R. Pego, Metastable patterns in solutions of ut 2 u - f(u), Comm. Pure Appl. Math. 42 (1989) 523-576.
  • [10] X. Chen, Generation and propagation of interfaces for reaction-diffusion equations, IMA preprint #637, University of Minnesota, 1990.
  • [11] Y. Chen, The weak solutions to the evolution problem of harmonic maps, Math. Z.201 (1989) 69-74.
  • [12] Y. Chen and M. Struwe, Existence and partial regularity results for the heat flow for harmonic maps, Math. Z. 201 (1989) 83-103.
  • [13] Y.-G. Chen, Y. Giga, and S. Goto, Uniqueness and existence of viscosity solutions of generalized mean curvature flow equations, J. Differential Geometry 33 (1991) 749-786.
  • [14] E. De Giorgi, Some conjectures on flow by mean curvature, white paper, 1990.
  • [15] L. C. Evans, H. M. Soner, and P. E. Souganidis, Phase transitions and generalized motion by mean curvature, Comm. Pure Appl. Math., to appear.
  • [16] L. C. Evans and J. Spruck, Motion of level sets by mean curvature.I, J. Differential Geometry 33 (1991) 635-681.
  • [17] L. C. Evans and J. Spruck, Motion of level sets by mean curvature.II, Trans. Amer. Math. Soc, to appear.
  • [18] L. C. Evans and J. Spruck, Motion of level sets by mean curvature.III, J. Geometry Analysis, to appear.
  • [19] L. C. Evans and J. Spruck, Motion of level sets by mean curvature, IV, preprint.
  • [20] P. C. Fife, Dynamics of internal layers and diffusive interfaces, SIAM, CBMS, 1988.
  • [21] J. Frlich and M. Struwe, Variation problems on vector bundles, preprint, 1990.
  • [22] G. Fusco, A geometric approach to the dynamics of ut = 2 u + f(u) for small, Proc. Conf. Stuttgart (K. Kirchgassner, ed.), Lecture Notes in Physics #359, 1988.
  • [23] G. Huisken, Asymptotic behavior for singularities of the mean curvature flow, J. Differential Geometry 31 (1990) 285-299.
  • [24] T. Ilmanen, Generalized motion of sets by mean curvature on a manifold, IndianaUniversity J. Math. 41 (1992) 671-705.
  • [25] T. Ilmanen, Thelevel-setflowon a manifold, Proc. 1990 Summer Inst. in Differential Geometry (R. E. Greene and S. T. Yau, ed.), Amer. Math. Soc, 1992.
  • [26] T. Ilmanen, Elliptic regularization and partial regularity for motion by mean curvature, Mem. Amer. Math. Soc.No. 1304, 1993.
  • [27] S. Luckhaus and L. Modica, Gradient theory of phase transitions with Gibbs-Thompson curvature effects, Arch. Rational Mech. Anal. 107 (1989) 71-83.
  • [28] L. Modica, The gradient theory of phase transitions and the minimal interface criterion, Arch. Rational Mech. Anal. 98 (1986) 123-142.
  • [29] L. Modica and S. Mortola, Un esempio di -convergenza, Boll. Un. Mat. Ital. (5) 14-B (1977) 285-299.
  • [30] P. de Mottoni and M. Schatzman, Evolution geometrique tf interfaces, C. R. Acad. Sci. Paris 309 (1989) 453-458.
  • [31] P. de Mottoni and M. Schatzman, Geometrical evolution of developed interfaces, Trans. Amer. Math. Soc, to appear.
  • [32] J. Rubinstein, P. Sternberg and J. B. Keller, Fast reaction, slow diffusion and curve shortening, SIAMJ. Appl. Math. 49 (1989) 116-133.
  • [33] L. Simon, Lectures on geometric measure theory, Proc Centre Math. Anal. Austral. Nat. Univ. 3 (1983).
  • [34] H. M. Soner, Motion of a set by the mean curvature of its boundary, J. Differential Equations, to appear.
  • [35] H. M. Soner, Ginzburg-Landau equation and motion by mean curvature, I: Convergence, preprint.
  • [36] M. Struwe, On the evolution of harmonic maps in higher dimensions, J. Differential Geometry 28 (1988) 485-502.