Journal of Differential Geometry

Flat $G$-bundles with canonical metrics

Kevin Corlette

Full-text: Open access

Article information

Source
J. Differential Geom., Volume 28, Number 3 (1988), 361-382.

Dates
First available in Project Euclid: 26 June 2008

Permanent link to this document
https://projecteuclid.org/euclid.jdg/1214442469

Digital Object Identifier
doi:10.4310/jdg/1214442469

Mathematical Reviews number (MathSciNet)
MR965220

Zentralblatt MATH identifier
0676.58007

Subjects
Primary: 58E20: Harmonic maps [See also 53C43], etc.
Secondary: 32L99: None of the above, but in this section 53C10: $G$-structures

Citation

Corlette, Kevin. Flat $G$-bundles with canonical metrics. J. Differential Geom. 28 (1988), no. 3, 361--382. doi:10.4310/jdg/1214442469. https://projecteuclid.org/euclid.jdg/1214442469


Export citation

References

  • [1] M. F. Atiyah and R. Bott, The Yang-Mills equations over Riemann surfaces, Philos. Trans. Roy. Soc. London Ser. A 308 (1982) 523-615.
  • [2] D. Birkes, Orbits of linear algebraic groups, Ann. of Math. (2) 93 (1971) 459-475.
  • [3] P. Deligne, Theorie de Hodge. II, Inst. Hautes Etudes Sci. Publ. Mat. 40 (1970) 5-57.
  • [4] S. K. Donaldson, A new proof of a theorem of Narasimhan and Seshadri, J. Differential Geometry 18 (1983) 269-277.
  • [5] S. K. Donaldson, Anti-self-dual Yang-Mills connections over complex algebraic surfaces and stable vector bundles, Proc. London Math. Soc. 50 (1985) 1-26.
  • [6] J. Eells and J. H. Sampson, Harmonic mappings of Riemannian manifolds, Amer. J. Math. 86 (1964) 109-160.
  • [7] W. M. Goldman and J. Millson, Local rigidity of discrete groups actingon complex hyperbolic space, Invent. Math. 88 (1987) 495-520.
  • [8] P. A. Griffiths, Periods of integrals on algebraic manifolds. III, Inst. Hautes Etudes Sci. Publ. Math. 38 (1970) 125-180.
  • [9] V. W. Guillemin and S. Sternberg, Geometric quantization and multiplicities of group representations, Invent. Math. 67 (1982) 515-538.
  • [10] R. S. Hamilton, Harmonic mappings of manifolds with boundary, Lecture Notes in Math., Vol. 471, Springer, New York, 1975.
  • [11] G. R. Kempf and L. A. Ness. The length of vectors in representation spaces, Algebraic Geometry, Proc, Copenhagen 1978 (K. Lonsted, ed.), Lecture Notes in Math., Vol. 732, Springer, New York, 1979.
  • [12] S. Kobayashi, Hyperbolic manifolds and holomorphic mappings, Marcel Dekker, New York, 1970.
  • [13] D. Mumford and J. Fogarty, Geometric invariant theory, Springer, New York, 1982.
  • [14] Y.-T. Siu, The complex-analyticity of harmonic maps and the strong rigidity of compact Kahler manifolds, Ann. of Math. (2) 112 (1980) 73-112.
  • [15] Y.-T. Siu, Strong rigidity of compact quotients of exceptional bounded symmetric domains, Duke Math. J. 48 (1981) 857-871.
  • [16] D. Toledo, Harmonic maps from surfaces to certain Kahler manifolds, Math. Scand. 45 (1979) 13-26.
  • [17] D. Toledo, Representations of surface groups in PSU(1, n) with maximum characteristic number, J. Differential Geometry 29 (1989) to appear.
  • [18] K. Uhlenbeck, Connections with Lp bounds on curvature, Comm. Math. Phys. 83 (1982) 31-42.
  • [19] K. Uhlenbeck and S. T. Yau, On the existence of Hermitian-Yang-Mills connections in stable vector bundles, Comm. Pure Appl. Math. 34 (1986) 257-293.
  • [20] A. Weil, Introduction aux etudes des varietes kahleriennes, Hermann, Paris, 1952.