Journal of Applied Probability

Joint distribution of distances in large random regular networks

Justin Salez

Full-text: Access denied (no subscription detected) We're sorry, but we are unable to provide you with the full text of this article because we are not able to identify you as a subscriber. If you have a personal subscription to this journal, then please login. If you are already logged in, then you may need to update your profile to register your subscription. Read more about accessing full-text

Abstract

We study the array of point-to-point distances in random regular graphs equipped with exponential edge lengths. We consider the regime where the degree is kept fixed while the number of vertices tends to ∞. The marginal distribution of an individual entry is now well understood, thanks to the work of Bhamidi, van der Hofstad and Hooghiemstra (2010). The purpose of this note is to show that the whole array, suitably recentered, converges in the weak sense to an explicit infinite random array. Our proof consists in analyzing the invasion of the network by several mutually exclusive flows emanating from different sources and propagating simultaneously along the edges.

Article information

Source
J. Appl. Probab. Volume 50, Number 3 (2013), 861-870.

Dates
First available in Project Euclid: 5 September 2013

Permanent link to this document
https://projecteuclid.org/euclid.jap/1378401241

Digital Object Identifier
doi:10.1239/jap/1378401241

Mathematical Reviews number (MathSciNet)
MR3102519

Zentralblatt MATH identifier
1277.60021

Subjects
Primary: 60C05: Combinatorial probability
Secondary: 05C80: Random graphs [See also 60B20] 90B15: Network models, stochastic

Keywords
Random regular graph distance matrix first passage percolation multitype Richardson process configuration model branching process approximation

Citation

Salez, Justin. Joint distribution of distances in large random regular networks. J. Appl. Probab. 50 (2013), no. 3, 861--870. doi:10.1239/jap/1378401241. https://projecteuclid.org/euclid.jap/1378401241.


Export citation

References

  • Aldous, D. J. (2010). More uses of exchangeability: representations of complex random structures. In Probability and Mathematical Genetics (London Math. Soc. Lecture Notes 378), Cambridge University Press, pp. 35–63.
  • Aldous, D. J. and Bhamidi, S. (2010). Edge flows in the complete random-lengths network. Random Structures Algorithms 37, 271–311.
  • Amini, A. and Lelarge, M. (2011). The diameter of weighted random graphs. Preprint. Available at http://arXiv.org/abs/1112.6330v1.
  • Antunović, T., Dekel, Y., Mossel, E. and Peres, Y. (2011). Competing first passage percolation on random regular graphs. Preprint. Available at http://arXiv.org/abs/1109.2575v1.
  • Athreya, K. B. and Ney, P. E. (2004). Branching Processes. Dover Publications, Mineola, NY.
  • Bhamidi, S. (2008). First passage percolation on locally treelike networks. I. Dense random graphs. J. Math. Phys. 49, 125218, 27pp.
  • Bhamidi, S., van der Hofstad, R. and Hooghiemstra, G. (2010). Extreme value theory, Poisson-Dirichlet distributions, and first passage percolation on random networks. Adv. Appl. Prob. 42, 706–738.
  • Bhamidi, S., van der Hofstad, R. and Hooghiemstra, G. (2010). First passage percolation on random graphs with finite mean degrees. Ann. Appl. Prob. 20, 1907–1965.
  • Bhamidi, S., van der Hofstad, R. and Hooghiemstra, G. (2011). First passage percolation on the Erdős-Rényi random graph. Combinatorics Prob. Comput. 20, 683–707.
  • Bhamidi, S., van der Hofstad, R. and Hooghiemstra, G. (2012). Universality for first passage percolation on sparse random graphs. Preprint. Available at http://arXiv.org/abs/1210.6839v1.
  • Bollobás, B. (1980). A probabilistic proof of an asymptotic formula for the number of labelled regular graphs. Europ. J. Combinatorics 1, 311–316.
  • Cox, J. T. and Durrett, R. (1981). Some limit theorems for percolation processes with necessary and sufficient conditions. Ann. Prob. 9, 583–603.
  • Deijfen, M. and Häggström, O. (2006). The initial configuration is irrelevant for the possibility of mutual unbounded growth in the two-type Richardson model. Combinatorics Prob. Comput. 15, 345–353.
  • Deijfen, M. and Häggström, O. (2006). Nonmonotonic coexistence regions for the two-type Richardson model on graphs. Electron. J. Prob. 11, 331–344.
  • Deijfen, M. and Häggström, O. (2007). The two-type Richardson model with unbounded initial configurations. Ann. Appl. Prob. 17, 1639–1656.
  • Ding, J., Kim, J. H., Lubetzky, E. and Peres, Y. (2010). Diameters in supercritical random graphs via first passage percolation. Combinatorics Prob. Comput. 19, 729–751.
  • Garet, O. and Marchand, R. (2008). First-passage competition with different speeds: positive density for both species is impossible. Electron. J. Prob. 13, 2118–2159.
  • Häggström, O. and Pemantle, R. (1998). First passage percolation and a model for competing spatial growth. J. Appl. Prob. 35, 683–692.
  • Häggström, O. and Pemantle, R. (2000). Absence of mutual unbounded growth for almost all parameter values in the two-type Richardson model. Stochastic Process. Appl. 90, 207–222.
  • Hoffman, C. (2005). Coexistence for Richardson type competing spatial growth models. Ann. Appl. Prob. 15, 739–747.
  • Hoffman, C. (2008). Geodesics in first passage percolation. Ann. Appl. Prob. 18, 1944–1969.
  • Janson, S. (1999). One, two and three times $\log n/n$ for paths in a complete graph with random weights. Combinatorics Prob. Comput. 8, 347–361.
  • Janson, S. (2009). The probability that a random multigraph is simple. Combinatorics Prob. Comput. 18, 205–225.
  • Joseph, A. (2011). The component sizes of a critical random graph with given degree sequence. Preprint. Available at http://arXiv.org/abs/1012.2352v2.
  • Kesten, H. (1986). Aspects of first passage percolation. In École d'été de Probabilités de Saint-Flour, XIV–-1984 (Lecture Notes Math. 1180), Springer, Berlin, pp. 125–264.
  • Van der Hofstad, R., Hooghiemstra, G. and Van Mieghem, P. (2001). First-passage percolation on the random graph. Prob. Eng. Inf. Sci. 15, 225–237.
  • Van der Hofstad, R., Hooghiemstra, G. and Van Mieghem, P. (2005). Distances in random graphs with finite variance degrees. Random Structures Algorithms 27, 76–123.