Journal of Applied Probability

A lower bound for the first passage time density of the suprathreshold Ornstein-Uhlenbeck process

Peter J. Thomas

Full-text: Access denied (no subscription detected)

We're sorry, but we are unable to provide you with the full text of this article because we are not able to identify you as a subscriber. If you have a personal subscription to this journal, then please login. If you are already logged in, then you may need to update your profile to register your subscription. Read more about accessing full-text


We prove that the first passage time density ρ(t) for an Ornstein-Uhlenbeck process X(t) obeying dX = -β Xdt + σdW to reach a fixed threshold θ from a suprathreshold initial condition x0 > θ > 0 has a lower bound of the form ρ(t) > kexp[-pet] for positive constants k and p for times t exceeding some positive value u. We obtain explicit expressions for k, p, and u in terms of β, σ, x0, and θ, and discuss the application of the results to the synchronization of periodically forced stochastic leaky integrate-and-fire model neurons.

Article information

J. Appl. Probab., Volume 48, Number 2 (2011), 420-434.

First available in Project Euclid: 21 June 2011

Permanent link to this document

Digital Object Identifier

Mathematical Reviews number (MathSciNet)

Zentralblatt MATH identifier

Primary: 60J70: Applications of Brownian motions and diffusion theory (population genetics, absorption problems, etc.) [See also 92Dxx]
Secondary: 92C20: Neural biology

Leaky integrate and fire neuron Ornstein-Uhlenbeck process reliability synchronization neural model lower bound


Thomas, Peter J. A lower bound for the first passage time density of the suprathreshold Ornstein-Uhlenbeck process. J. Appl. Probab. 48 (2011), no. 2, 420--434. doi:10.1239/jap/1308662636.

Export citation


  • Capocelli, R. M. and Ricciardi, L. M. (1971). Diffusion approximation and first passage time problem for a model neuron. Kybernetik 8, 214–223.
  • Coombes, S. and Bressloff, P. C. (1999). Mode locking and Arnold tongues in integrate-and-fire neural oscillators. Phys. Rev. E 60, 2086–2096.
  • Cox, D. R. and Miller, H. D. (1965). The Theory of Stochastic Processes. John Wiley, New York.
  • Doi, S., Inoue, J. and Kumagai, S. (1998). Spectral analysis of stochastic phase lockings and stochastic bifurcations in the sinusoidally forced van der Pol oscillator with additive noise. J. Statist. Phys. 90, 1107–1127.
  • Fellous, J.-M., Tiesinga, P. H. E., Thomas, P. J. and Sejnowski, T. J. (2004). Discovering spike patterns in neuronal responses. J. Neurosci. 24, 2989–3001.
  • Giorno, V., Nobile, A. G. and Ricciardi, L. M. (1990). On the asymptotic behaviour of first-passage-time densities for one-dimensional diffusion processes and varying boundaries. Adv. Appl. Prob. 22, 883–914.
  • Hunter, J. D., Milton, J. G., Thomas, P. J. and Cowan, J. D. (1998). Resonance effect for neural spike time reliability. J. Neurophysiology 80, 1427–1438.
  • Keener, J. P., Hoppensteadt, F. C. and Rinzel, J. (1981). Integrate-and-fire models of nerve membrane response to oscillatory input. SIAM J. Appl. Math. 41, 503–517.
  • Lasota, A. and Mackey, M. C. (1994). Chaos, Fractals, and Noise (Appl. Math. Sci. 97). Springer, New York.
  • Lehmann, A. (2002). Smoothness of first passage time distributions and a new integral equation for the first passage time density of continuous Markov processes. Adv. Appl. Prob. 34, 869–887.
  • Lindner, B. (2004). Moments of the first passage time under external driving. J. Statist. Phys. 117, 703–737.
  • Loader, C. R. and Deely, J. J. (1987). Computations of boundary crossing probabilities for the Wiener process. J. Statist. Comput. Simul. 27, 95–105.
  • Mainen, Z. F. and Sejnowski, T. J. (1995). Reliability of spike timing in neocortical neurons. Science 268, 1503–1506.
  • Nobile, A. G., Ricciardi, L. M. and Sacerdote, L. (1985). Exponential trends of Ornstein-Uhlenbeck first-passage-time densities. J. Appl. Prob. 22, 360–369.
  • Nobile, A. G., Ricciardi, L. M. and Sacerdote, L. (1985). Exponential trends of first-passage-time densities for a class of diffusion processes with steady-state distribution. J. Appl. Prob. 22, 611–618.
  • Pakdaman, K. (2001). Periodically forced leaky integrate-and-fire model. Phys. Rev. E 63, 041907, 5pp.
  • Pauwels, E. J. (1987). Smooth first-passage densities for one-dimensional diffusions. J. Appl. Prob. 24, 370–377.
  • Pinsky, M. and Karlin, S. (2011). An Introduction to Stochastic Modeling, 4th edn. Academic Press, Burlington, CA.
  • Reinagel, P. and Reid, R. C. (2002). Precise firing events are conserved across neurons. J. Neurosci. 22, 6837–6841.
  • Rescigno, A., Stein, R. B., Purple, R. L. and Poppele, R. E. (1970). A neuronal model for the discharge patterns produced by cyclic inputs. Bull. Math. Biophys. 32, 337–353.
  • Ricciardi, L. M. and Sato, S. (1988). First-passage-time density and moments of the Ornstein-Uhlenbeck process. J. Appl. Prob. 25, 43–57.
  • Sato, S. (1977). Evaluation of the first-passage time probability to a square root boundary for the Wiener process. J. Appl. Prob. 14, 850–856.
  • Shimokawa, T. \et (2000). A first-passage-time analysis of the periodically forced noisy leaky integrate-and-fire model. Biol. Cybernet. 83, 327–340.
  • Stiefel, K. M., Fellous, J. M., Thomas, P. J. and Sejnowski, T. J. (2010). Intrinsic subthreshold oscillations extend the influence of inhibitory synaptic inputs on cortical pyramidal neurons. Eur. J. Neurosci. 31, 1019–1026.
  • Tateno, T. (1998). Characterization of stochastic bifurcations in a simple biological oscillator. J. Statist. Phys. 92, 675–705.
  • Tateno, T. (2002). Noise-induced effects on period-doubling bifurcation for integrate-and-fire oscillators. Phys. Rev. E 65, 021901, 10pp.
  • Tateno, T. and Jimbo, Y. (2000). Stochastic mode-locking for a noisy integrate-and-fire oscillator. Phys. Lett. A 271, 227–236.
  • Tateno, T., Doi, S., Sato, S. and Ricciardi, L. M. (1995). Stochastic phase lockings in a relaxation oscillator forced by a periodic input with additive noise: a first-passage-time approach. J. Statist. Phys. 78, 917–935.
  • Thomas, P. J., Tiesinga, P. H., Fellous, J. M. and Sejnowski, T. J. (2003). Reliability and bifurcation in neurons driven by multiple sinusoids. Neurocomput. 52-54, 955–961.
  • Tiesinga, P., Fellous, J.-M. and Sejnowski, T. J. (2008). Regulation of spike timing in visual cortical circuits. Nature Rev. Neurosci. 9, 97–107.
  • Toups, J. V. et al. (2011). Finding the event structure of neuronal spike trains. To appear in Neural Computation.
  • Tuckwell, H. C. and Wan, F. Y. M. (1984). First-passage time of Markov processes to moving barriers. J. Appl. Prob. 21, 695–709.
  • Wan, F. Y. M. and Tuckwell, H. C. (1982). Neuronal firing and input variability. J. Theoret. Neurobiol. 1, 197–218.