Journal of Applied Probability

A uniformly convergent adaptive particle filter

Anastasia Papavasiliou

Full-text: Access denied (no subscription detected)

We're sorry, but we are unable to provide you with the full text of this article because we are not able to identify you as a subscriber. If you have a personal subscription to this journal, then please login. If you are already logged in, then you may need to update your profile to register your subscription. Read more about accessing full-text


Particle filters are Monte Carlo methods that aim to approximate the optimal filter of a partially observed Markov chain. In this paper, we study the case in which the transition kernel of the Markov chain depends on unknown parameters: we construct a particle filter for the simultaneous estimation of the parameter and the partially observed Markov chain (adaptive estimation) and we prove the convergence of this filter to the correct optimal filter, as time and the number of particles go to infinity. The filter presented here generalizes Del Moral's Monte Carlo particle filter.

Article information

J. Appl. Probab. Volume 42, Number 4 (2005), 1053-1068.

First available in Project Euclid: 14 December 2005

Permanent link to this document

Digital Object Identifier

Mathematical Reviews number (MathSciNet)

Zentralblatt MATH identifier

Primary: 60G35: Signal detection and filtering [See also 62M20, 93E10, 93E11, 94Axx]
Secondary: 93E10: Estimation and detection [See also 60G35] 93E11: Filtering [See also 60G35] 65C50: Other computational problems in probability

Nonlinear filtering particle filter Bayesian estimation


Papavasiliou, Anastasia. A uniformly convergent adaptive particle filter. J. Appl. Probab. 42 (2005), no. 4, 1053--1068. doi:10.1239/jap/1134587816.

Export citation


  • Andrieu, C. and Doucet, A. (2002). Particle filtering for partially observed Gaussian state space models. J. R. Statist. Soc. B 64, 827--836.
  • Budhiraja, A. and Kushner, H. J. (2000). Approximation and limit results for nonlinear filters over an infinite time interval. II. Random sampling algorithms. SIAM J. Control Optimization 38, 1874--1908.
  • Crisan, D., Del Moral, P. and Lyons, T. (1999). Discrete filtering using branching and interacting particle systems. Markov Proc. Relat. Fields 5, 293--318.
  • Del Moral, P. (1998). A uniform convergence theorem for numerical solving of the nonlinear filtering problem. J. Appl. Prob. 35, 873--884.
  • Del Moral, P. and Guionnet, A. (1999). On the stability of measure valued processes with applications to filtering. C. R. Acad. Sci. Paris 329, 429--434.
  • Del Moral, P. and Miclo, L. (2000). Branching and interactive particle systems approximations of Feynman--Kac formulae with application to non-linear filtering. In Séminaire de Probabilités XXXIV (Lecture Notes Maths. 1729), eds J. Azéma, M. Émery, M. Ledoux and M. Yor, Springer, Berlin, pp. 1--145.
  • Gordon, N., Maskell, S. and Kirubarajan, T. (2002). Efficient particle filters for joint tracking and classification. In Proc. SPIE Signal Data Process. Small Targets, SPIE, Vol. 4728, pp. 439--449.
  • Gordon, N. J., Salmond, D. J. and Smith, A. F. M. (1993). Novel approach to nonlinear/non-Gaussian Bayesian state estimation. IEE Proc. F 140, 107--113.
  • Kitagawa, G. (1996). Monte Carlo filter and smoother for non-Gaussian nonlinear state space models. J. Comput. Graphical Statist. 5, 1--25.
  • Le Gland, F. and Oudjane, N. (2004). Stability and uniform approximation of nonlinear filters using the Hilbert metric, and application to particle filters. Ann. Appl. Prob. 14, 144--187.
  • Liu, J. and West, M. (2001). Combined parameter and state estimation in simulation-based filtering. In Sequential Monte Carlo Methods in Practice, eds A. Doucet, N. de Freitas and N. Gordon, Springer, New York, pp. 197--223.
  • Papavasiliou, A. (2005). Parameter estimation and asymptotic stability in stochastic filtering. To appear in Stoch. Process. Appl.
  • Storvik, G. (2002). Particle filters for state space models with the presence of unknown static parameters. IEEE Trans. Signal Process. 50, 281--289.