Hiroshima Mathematical Journal

Zeta functions of Selberg's type associated with homogeneous vector bundles

Masato Wakayama

Full-text: Open access

Article information

Source
Hiroshima Math. J. Volume 15, Number 2 (1985), 235-295.

Dates
First available in Project Euclid: 21 March 2008

Permanent link to this document
https://projecteuclid.org/euclid.hmj/1206130772

Mathematical Reviews number (MathSciNet)
MR805055

Zentralblatt MATH identifier
0592.22012

Subjects
Primary: 22E46: Semisimple Lie groups and their representations
Secondary: 11F72: Spectral theory; Selberg trace formula 22E30: Analysis on real and complex Lie groups [See also 33C80, 43-XX] 58G25

Citation

Wakayama, Masato. Zeta functions of Selberg's type associated with homogeneous vector bundles. Hiroshima Math. J. 15 (1985), no. 2, 235--295. https://projecteuclid.org/euclid.hmj/1206130772.


Export citation

References

  • [1] M. Baldoni Silva and D. Barbasch, The unitary spectrum for real rank one groups, Inventiones math. 72 (1983), 27-55.
  • [2] N. Bourbaki, Elements de Mathematique, Groupes e algbres de Lie, Chap. 4-6, Hermann, Paris, (1968).
  • [3] D. De George, Length spectrum for compact locally symmetric spaces of strictly negative curvature, Ann. Ecole Norm. Sup. 10 (1977), 133-152.
  • [4] J. Duistermaat, J. Kolk and V. Varadarajan, Spectra of compact locally symmetric manifolds of negative curvature, Inventiones math. 52 (1979), 27-93.
  • [5] R. Gangolli, Asymptotic behavior of spectra of compact quotients of certain symmetric spaces, Acta Math. 121 (1968), 151-192.
  • [6] R. Gangolli, On the length spectra of certain manifolds of negative curvature, J. Diff. Geom. 12 (1977), 403-24.
  • [7] R. Gangolli, Zeta functions of Selberg's type for compact space forms of symmetric spaces of rank one, Illionois J. Math. 21 (1977), 1-41.
  • [8] R. Gangolli and G. Warner, On Selberg's trace formula, J. Math. Soc. Japan, 27 (1975), 328-343.
  • [9] Harish-Chandra, Spherical functions on a semisimple Lie group, I, II, Amer. J. Math. 80(1958), 241-310, 533-613.
  • [10] Harish-Chandra, Discrete series for semisimple Lie groups II, Acta Math. 116 (1966), 1-111.
  • [11] Harish-Chandra, Harmonic analysis on real reductive groups III, The Maass-Selberg relations and the Plancherel formula, Ann. of Math. 104 (1976), 117-201.
  • [12] D. Hejhal, The Selberg trace formula and the Riemann zeta function, Duke Math. J. 43 (1976), 441-482.
  • [13] S. Helgason, Differential Geometry, Lie Groups, and Symmetric Spaces, Academic Press, New York, (1978).
  • [14] A. Knapp and K. Okamoto, Limits of holmorphic discrete series, J. Functional Anal. 9 (1972), 337-409.
  • [15] A. Knapp and E. Stein, Intertwining operators for semisimple groups, Ann. of Math. 93 (1971), 489-578, II, Inventiones math. 60 (1980), 9-84.
  • [16] B. Kostant, On the existence and irreducibility of certain series of representations, Bull. Amer. Math. Soc. 15 (1969), 627-642.
  • [17] M. Kuga, Topological analysis and its applications in weakly symmetric Riemannian spaces, Sugaku, 9 (1958), 166-185, (Japanese).
  • [18] R. Langlands, On the classification of irreducible representations of algebraic groups, Institute for Advanced Study, Princeton, N. J. (1975).
  • [19] Y. Matsushima and S. Murakami, On vector bundle valued harmonic forms and automorphic forms on symmetric Riemannian manifolds, Ann. of Math. 78 (1963), 365-416.
  • [20] R. MiateHo, On the Plancherel measure for linear Lie groups of rank one, Manuscripta Math. 29 (1979), 249-276.
  • [21] R. Miatello, The Minakshisundaram-Pleijel coefficients for the vector valued heat kernel on compact locally symmetric spaces of negative curvature, Trans, of Amer. Math. Soc. 260 (1980), 1-33.
  • [22] D. Milicic and M. Prime, On the irreducibilityof unitary principal series representations, Math. Ann. 260 (1982), 413-421.
  • [23] K. Okamoto, On the Plancherel formulas for some types of simple Lie groups, Osaka J. Math. 2 (1965), 247-282.
  • [24] D. Scott, Selberg type zeta functions for the group of complex two by two matrices of determinant one, Math. Ann. 253 (1980), 177-194.
  • [25] A. Selberg, Harmonic analysis and discontinuous groups in weakly symmetric Riemannian spaces with applications to Dirichlet series, J. Indian Math. Soc. 20 (1956), 47-87.
  • [26] P. Trombi, Harmonic analysis of CP (G, F) (l</7<2), J. Functional Anal. 40(1981), 84-125.
  • [27] M. Wakayama, Zeta functions of Selberg's type for compact quotient of SU(n, 1) (w>2), Hiroshima Math. J. 14 (1984), 597-618.
  • [28] N. Wallach, Harmonic Analysis on Homogeneous Spaces, Marcel Dekker, Inc., New York (1973).
  • [29] N. Wallach, On Harish-Chandra's generalized C-functions, Amer. J. Math. 97 (1975), 386-403.
  • [30] N. Wallach, An asymptotic formula of Gelfand and Gangolli for the spectrum of \G, J. Diff. Geom. 11 (1976), 91-101.
  • [31] N. Wallach, On the Selberg trace formula in the case of compact quotient, Bull. Amer. Math. Soc. 82 (1976), 171-195.
  • [32] G. Warner, Harmonic Analysis on Semi-Simple Lie groups, I, II, Springer Verlag, Berlin/New York, (1972).
  • [33] F. Whittaker and G. Watson, A Course of Modern Analysis, 4th ed., Cambridge Univ. Press, London/New York, (1927).
  • [34] D. Widder, The Laplace Transform, Princeton Univ. Press, Princeton N. J., (1946).