Hiroshima Mathematical Journal

An elementary proof of the Trombi theorem for the Fourier transform of ${\scr C}\sp p(G:F)$

Masaaki Eguchi and Masato Wakayama

Full-text: Open access

Article information

Source
Hiroshima Math. J. Volume 17, Number 3 (1987), 471-487.

Dates
First available in Project Euclid: 21 March 2008

Permanent link to this document
https://projecteuclid.org/euclid.hmj/1206129956

Mathematical Reviews number (MathSciNet)
MR920708

Zentralblatt MATH identifier
0666.43003

Subjects
Primary: 22E45: Representations of Lie and linear algebraic groups over real fields: analytic methods {For the purely algebraic theory, see 20G05}
Secondary: 46N05

Citation

Eguchi, Masaaki; Wakayama, Masato. An elementary proof of the Trombi theorem for the Fourier transform of ${\scr C}\sp p(G:F)$. Hiroshima Math. J. 17 (1987), no. 3, 471--487. https://projecteuclid.org/euclid.hmj/1206129956.


Export citation

References

  • [1] J. G. Arthur, (a) Harmonic Analysis of Tempered Distributions on Semisimple Lie Groups of Real Rank One, Ph. D. thesis, Yale University, 1970; (b) Harmonic analysis of the Schwartz space on a reductive Lie group, I, preprint; (c) Harmonic analysis of the Schwartz space on a reductive Lie group, II, preprint.
  • [2] O. Campoli, The Complex Fourier Transform for Rank One Semisimple Lie Groups, Ph. D. thesis, Rutgers University, 1977.
  • [3] M. Eguchi, (a) The Fourier transform of the Schwartz space on a semisimple Lie group, Hiroshima Math. J. 4 (1974), 133-209; (b) Asymptotic Expansions of Eisenstein Integrals and Fourier Transform on Symmetric Spaces, J. Functional Analysis 34 (1979), 167-216.
  • [4] M. Eguchi, M. Hashizume and S. Koizumi, The Gangolli Estimates for the Coefficients of the Harish-Chandra Expansions of the Eisenstein Integrals on Real Reductive Lie Groups, to appear in Hiroshima Math. J. 17 (1987).
  • [5] M. Eguchi, M. Hashizume and K. Okamoto, The Paley-Wiener theorem for distributions on symmetric spaces, Hiroshima Math. J. 3 (1973), 109-120.
  • [6] M. Eguchi and A. Kowata, On the Fourier transform of rapidly decreasing functions of Lp type on a symmetric space, Hiroshima Math. J. 6 (1976), 143-158.
  • [7] M. Eguchi and K. Okamoto, The Fourier transform of the Schwartz space on a symmetric space, Proc. Japan Acad. 53 (1977), 237-241.
  • [8] R. Gangolli, On the Plancherel formula and the Paley-Wiener theorem for spherical functions on semisimple Lie groups, Ann. of Math. 93 (1971), 150-165.
  • [9] Harish-Chandra, (a) Spherical functions on a semisimple Lie group, I, II, Amer. J. Math. 80 (1958), 241-310, 553-613; (b) Discrete series for semisimple Lie groups, II, Acta Math.116 (1966), 1-111; (c) Harmonic analysis on real reductive Lie groups, I. The theory of constant term', J. Functional Analysis 19 (1975), 104-204; (d) Harmonic Analysis on realreductive Lie groups, II. Wave-packets in the Schwartz space; Invent, math. 36 (1976), 1-55; (e) Harmonic analysis on real reductive Lie groups, III. The Maas-Selberg relations and the Plancherelformula', Ann. of Math. 104 (1976), 117-201.
  • [10] S. Helgason, (a) A duality for symmetric spaces, with applications to group representations, Advances in Math. 5 (1970), 1-154; (b) Groups and Geometric Analysis, Academic Press, New York, 1984.
  • [11] A. W. Knapp and E. M. Stein, Intertwining operators for semisimple Lie groups, Ann. of Math. 93 (1971), 489-578.
  • [12] P. C. Trombi, (a) Fourier Analysis on Semisimple Lie Groups Whose Split Rank Equals One, Ph. D. thesis, University of Illinois, 1970. (b) Asymptotic expansions of matrix coefficients: The real rank one case, J. Functional Analysis30 (1978), 83-105 (c) Harmonic Analysis of Cp (G: F) (<p<2), J. Functional Analysis 40 (1981), 84-125.
  • [13] P. C. Trombi and V. S. Varadarajan, Spherical transform on semisimple Lie groups, Ann. of Math. 94 (1971), 246-303.
  • [14] G. Warner, Harmonic Analysis on Semisimple Lie Groups II, Springer-Verlag, New York, 1972.
  • [15] W. H. Barker, Lp Harmonic analysis on SL(2, R), preprint (1986).