Hiroshima Mathematical Journal

A note on the Selberg zeta function for compact quotients of hyperbolic spaces

Masato Wakayama

Full-text: Open access

Article information

Hiroshima Math. J. Volume 21, Number 3 (1991), 539-555.

First available in Project Euclid: 21 March 2008

Permanent link to this document

Mathematical Reviews number (MathSciNet)

Zentralblatt MATH identifier

Primary: 22E45: Representations of Lie and linear algebraic groups over real fields: analytic methods {For the purely algebraic theory, see 20G05}
Secondary: 22E30: Analysis on real and complex Lie groups [See also 33C80, 43-XX]


Wakayama, Masato. A note on the Selberg zeta function for compact quotients of hyperbolic spaces. Hiroshima Math. J. 21 (1991), no. 3, 539--555.https://projecteuclid.org/euclid.hmj/1206128720

Export citation


  • [1] E. D'Hoker and D. H. Phong, On determinants of Laplacians on Riemann surfaces, Comm. Math. Phys. 104 (1986), 537-545.
  • [2] D. De George, Length spectrum for compact locally symmetric spaces of strictly negative curvature, Ann. Sci. Ecole Norm. Sup. 10 (1977), 133-152.
  • [3] D. Fried, The zeta functions of Ruelle and Selberg I, Ann. Sci. Ecole Norm. Sup. 19(1986), 491-517.
  • [4] R. Gangolli, Zeta functions of Selberg's type for compact space forms of symmetric spaces of rank one, Illinois J. Math. 21 (1977), 1-41.
  • [5] R. Gangolli, On the length spectra of certain compact manifolds of negative curvature, J. Diff. Geom. 12 (1977), 403-423.
  • [6] R. Gangolli and G. Warner, On Selberg's trace formular, J. Math. Soc. Japan 27 (1975), 328-343.
  • [7] M. Hashizume, Harmonic analysis on noncompact symmetric spaces of rank one and its applications (Japanese), RIMS Kdkyuroku Kyoto Univ. 481 (1983), 155-177.
  • [8] D. Hejhal, The Sellberg trace formula and the Riemann zeta function, Duke Math. J. 43 (1976), 441-482.
  • [9] D. Hejhal, "The Selberg Trace Formula for PSL(2, R), Vol. 1," Lecture Notes in Math. 548, Springer-Verlag, New York, 1976.
  • [10] S. Helgason, "Differential Geometry, Lie Groups, and Symmetric Spaces," Academic Press, New York, 1978.
  • [11] S. Helgason, "Differential Geometry, "Group and Geometric Analysis," Academic Press, New York, 1984.
  • [12] M. Kuga, Topological analysis and its applications in weakly symmetric Riemannian spaces (Japanese), Sugaku 9 (1958), 166-185.
  • [13] R. Miatello, The Minakshisundaram-Pleijel coefficients for the vector valued heat kernel on compact locally symmetric spaces of negative curvature, Trans. Amer. Math. Soc. 260 (1980), 1-33.
  • [14] P. Sarnak, Determinants of Laplacians, Comm. Math. Phys. 110 (1987), 113-120.
  • [15] A. Selberg, Harmonic analysis and discontinuous subgroups in weakly symmetric Riemannian spaces with applications to Dirichlet series, J. Indian Math. Soc. 20 (1956), 47-87.
  • [16] A. Voros, Spectral functions, specialfunctions and the Selberg zeta function, Comm. Math. Phys. 110 (1987), 439-465.
  • [17] M. Wakayama, Zeta functions of Selberg's type associated with homogeneous vector bundles, Hiroshima Math. J. 15 (1985), 235-295.
  • [18] M. Wakayama, A formula for the logarithmic derivative of Selberg's zetafunction, J. Math. Soc. Japan 41 (1989), 463-471.
  • [19] M. Wakayama, The relation between the rj-invariant and the spin representation in terms of the Selberg zeta function, to appear in Advanced Studies in Pure Math. 21 (1991).
  • [20] N. Wallach, An asymptotic formula of Gelfand and Gangolli for the spectrum of F\G, J. Diff. Geom. 11 (1976), 91-101.
  • [21] G. Warner, "Harmonic analysis on Semi-Simple Lie Groups, I, II." Springer-Verlag, New York, 1972.
  • [22] J. A. Wolf, "Spaces of Constant Curvature, Third Edition," Publish or Perish, Boston, 1974.