Experimental Mathematics

On the topography of Maass waveforms for {${\rm PSL}(2,{\bf Z})$}

Dennis A. Hejhal and Barry N. Rackner

Abstract

This article provides a glimpse into "arithmetical quantum chaos'' through a study of the topography and statistical properties of the eigenfunctions of the Laplacian for the modular surface $\PSL(2,\ints)\bs H$.

Article information

Source
Experiment. Math., Volume 1, Issue 4 (1992), 275-305.

Dates
First available in Project Euclid: 25 March 2003

Permanent link to this document
https://projecteuclid.org/euclid.em/1048610117

Mathematical Reviews number (MathSciNet)
MR1257286

Zentralblatt MATH identifier
0813.11035

Subjects
Primary: 11F72: Spectral theory; Selberg trace formula
Secondary: 11-04: Explicit machine computation and programs (not the theory of computation or programming) 81-04: Explicit machine computation and programs (not the theory of computation or programming) 81Q50: Quantum chaos [See also 37Dxx]

Citation

Hejhal, Dennis A.; Rackner, Barry N. On the topography of Maass waveforms for {${\rm PSL}(2,{\bf Z})$}. Experiment. Math. 1 (1992), no. 4, 275--305. https://projecteuclid.org/euclid.em/1048610117


Export citation