Duke Mathematical Journal

Nonlinear gravitons, null geodesics, and holomorphic disks

Claude Lebrun and L. J. Mason

Full-text: Access denied (no subscription detected)

We're sorry, but we are unable to provide you with the full text of this article because we are not able to identify you as a subscriber. If you have a personal subscription to this journal, then please login. If you are already logged in, then you may need to update your profile to register your subscription. Read more about accessing full-text

Abstract

We develop a global twistor correspondence for pseudo-Riemannian conformal structures of signature (++--) with self-dual Weyl curvature. Near the conformal class of the standard indefinite product metric on S2×S2, there is an infinite-dimensional moduli space of such conformal structures, and each of these has the surprising global property that its null geodesics are all periodic. Each such conformal structure arises from a family of holomorphic disks in CP3 with boundary on some totally real embedding of RP3 into CP3. Some of these conformal classes are represented by scalar-flat indefinite Kähler metrics, and our methods give particularly sharp results in connection with this special case

Article information

Source
Duke Math. J., Volume 136, Number 2 (2007), 205-273.

Dates
First available in Project Euclid: 21 December 2006

Permanent link to this document
https://projecteuclid.org/euclid.dmj/1166711369

Digital Object Identifier
doi:10.1215/S0012-7094-07-13621-4

Mathematical Reviews number (MathSciNet)
MR2286630

Zentralblatt MATH identifier
1113.53032

Subjects
Primary: 53C28: Twistor methods [See also 32L25] 83C60: Spinor and twistor methods; Newman-Penrose formalism
Secondary: 14D21: Applications of vector bundles and moduli spaces in mathematical physics (twistor theory, instantons, quantum field theory) [See also 32L25, 81Txx]

Citation

Lebrun, Claude; Mason, L. J. Nonlinear gravitons, null geodesics, and holomorphic disks. Duke Math. J. 136 (2007), no. 2, 205--273. doi:10.1215/S0012-7094-07-13621-4. https://projecteuclid.org/euclid.dmj/1166711369


Export citation

References

  • V. I. Arnold, Mathematical Methods of Classical Mechanics, Grad. Texts in Math. 60, Springer, New York, 1978.
  • M. F. Atiyah, N. J. Hitchin, and I. M. Singer, Self-duality in four-dimensional Riemannian geometry, Proc. Roy. Soc. London Ser. A 362 (1978), 425--461.
  • C. Bănică and O. Stănăşilă, Algebraic Methods in the Global Theory of Complex Spaces, Editura Academiei, Bucharest, 1976.
  • W. Barth, C. Peters, and A. Van De Ven, Compact Complex Surfaces, Ergeb. Math. Grenzgeb. (3) 4, Springer, Berlin, 1984.
  • A. L. Besse, Manifolds All of,Whose Geodesics Are Closed, Ergeb. Math. Grenzgeb. 93, Springer, Berlin, 1978.
  • E. M. Chirka, Regularity of the boundaries of analytic sets (in Russian), Mat. Sb. (N.S.) 117 (159), no. 3 (1982), 291--336.; English translation in Math. USSR-Sb. 45 (1983), 291--335.
  • S. Choi and W. M. Goldman, The classification of real projective structures on compact surfaces, Bull. Amer. Math. Soc. (N.S.) 34 (1997), 161--171.
  • D. B. A. Epstein, ``A topology for the space of foliations'' in Geometry and Topology (Rio de Janeiro, 1976), Lecture Notes in Math. 597, Springer, Berlin, 1977, 132--150.
  • D. B. A. Epstein and H. Rosenberg, ``Stability of compact foliations'' in Geometry and Topology (Rio de Janeiro, 1976), Lecture Notes in Math. 597, Springer, Berlin, 1977, 151--160.
  • M. H. Freedman, On the topology of four-dimensional manifolds, J. Differential Geom. 17 (1982), 357--453.
  • R. Friedman and J. W. Morgan, Algebraic surfaces and Seiberg-Witten invariants, J. Algebraic Geom. 6 (1997), 445--479.
  • A. Futaki and T. Mabuchi, Moment maps and symmetric multilinear forms associated with symplectic classes, Asian J. Math. 6 (2002), 349--371.
  • P. Gauduchon, ``Surfaces kähleriennes dont la courbure vérifie certaines conditions de positivité'' in Riemannian Geometry in Dimension 4 (Paris, 1978/1979), Textes Math. 3, CEDIC, Paris, 1981, 220--263.
  • J. Globevnik, Perturbation by analytic discs along maximal real submanifolds of,C$\sp N$, Math. Z. 217 (1994), 287--316.
  • P. Griffiths and J. Harris, Principles of Algebraic Geometry, Pure Appl. Math., Wiley-Interscience, New York, 1978.
  • V. Guillemin, Cosmology in $(2 + 1)$-Dimensions, Cyclic Models, and Deformations of $M\sb 2,1$, Ann. of Math. Stud. 121, Princeton Univ. Press, Princeton, 1989.
  • I. Hambleton and M. Kreck, Cancellation, elliptic surfaces and the topology of certain four-manifolds, J. Reine Angew. Math. 444 (1993), 79--100.
  • S. W. Hawking and G. F. R. Ellis, The Large Scale Structure of,Space-Time, Cambridge Monogr. Math. Phys. 1, Cambridge Univ. Press, London, 1973.
  • C. D. Hill and M. Taylor, Integrability of rough almost complex structures, J. Geom. Anal. 13 (2003), 163--172.
  • F. Hirzebruch, W. D. Neumann, and S. S. Koh, Differentiable Manifolds and Quadratic Forms, Lecture Notes in Pure and Appl. Math. 4, Dekker, New York, 1971.
  • H. Kamada, Compact scalar-flat indefinite Kähler surfaces with Hamiltonian $S\sp 1$-symmetry, Comm. Math. Phys. 254 (2005), 23--44.
  • K. Kodaira and D. C. Spencer, On deformations of complex analytic structures, I, II, Ann. of Math. (2) 67 (1958), 328--466.
  • J. KolláR, ``Flips, flops, minimal models, etc.'' in Surveys in Differential Geometry (Cambridge, Mass., 1990), Lehigh Univ., Bethlehem, Pa., 1991, 113--199.
  • N. H. Kuiper, ``On convex locally-projective spaces'' in Convegno Internazionale di Geometria Differenziale (Venice, 1953), Edizioni Cremonese, Rome, 1954, 200--213.
  • M. Kuranishi, ``New proof,for the existence of locally complete families of complex structures'' in Proceedings of the Conference on Complex Analysis (Minneapolis, 1964), Springer, Berlin, 1965, 142--154.
  • R. Langevin and H. Rosenberg, On stability of compact leaves and fibrations, Topology 16 (1977), 107--111.
  • P. R. Law, Neutral Einstein metrics in four dimensions, J. Math. Phys. 32 (1991), 3039--3042.
  • C. Lebrun, Thickenings and gauge fields, Classical Quantum Gravity 3 (1986), 1039--1059.
  • —, Explicit self-dual metrics on $\mathbb C\mathbb P\sb 2\#\cdots\#\mathbb C\mathbb P\sb 2$, J. Differential Geom. 34 (1991), 223--253.
  • —, On the scalar curvature of complex surfaces, Geom. Funct. Anal. 5 (1995), 619--628.
  • C. Lebrun and L. J. Mason, Zoll manifolds and complex surfaces, J. Differential Geom. 61 (2002), 453--535.
  • G. R. Livesay, Fixed point free involutions on the $3$-sphere, Ann. of Math. (2) 72 (1960), 603--611.
  • B. Malgrange, ``Sur l'intégrabilité des structures presque-complexes'' in Symposia Mathematica, Vol. II (Rome, 1968), Academic Press, London, 1969, 289--296.
  • L. J. Mason, ``Global solutions of the self-duality equations in split signature'' in Further Advances in Twistor Theory, Vol. II, Pitman Res. Notes Math. Ser. 232, Longman Scientific and Technical, Harlow, England, 1995, 39--45.
  • Y. Matsushita, Fields of,$2$-planes and two kinds of almost complex structures on compact $4$-dimensional manifolds, Math. Z. 207 (1991), 281--291.
  • D. Mcduff, The structure of rational and ruled symplectic $4$-manifolds, J. Amer. Math. Soc. 3 (1990), 679--712.
  • D. Mcduff and D. Salamon, $J$-Holomorphic Curves and Symplectic Topology, Amer. Math. Soc. Colloq. Publ. 52, Amer. Math. Soc., Providence, 2004.
  • R. C. Mclean, Deformations of calibrated submanifolds, Comm. Anal. Geom. 6 (1998), 705--747.
  • J. W. Milnor and J. D. Stasheff, Characteristic Classes, Ann. of Math. Stud. 76, Princeton Univ. Press, Princeton, 1974.
  • I. Nakamura, Moishezon threefolds homeomorphic to P$\sp 3$, J. Math. Soc. Japan 39 (1987), 521--535.
  • A. Newlander and L. Nirenberg, Complex analytic coordinates in almost complex manifolds, Ann. of Math. (2) 65 (1957), 391--404.
  • Y.-G. Oh, Riemann-Hilbert problem and application to the perturbation theory of analytic discs, Kyungpook Math. J. 35 (1995), 39--75.
  • R. Penrose, ``Nonlinear gravitons and curved twistor theory'' in The Riddle of Gravitation (Syracuse, N.Y., 1975), General Relativity and Gravitation 7 (1976), 31--52.
  • M. Pontecorvo, On twistor spaces of anti-self-dual Hermitian surfaces, Trans. Amer. Math. Soc. 331 (1992), 653--661.
  • J. A. Schouten, Ricci-Calculus: An Introduction to Tensor Analysis and Its Geometrical Applications, 2nd ed., Grundlehren Math. Wiss. 10, Springer, Berlin, 1954.
  • Y. T. Siu, Errata: ``Nondeformability of the complex projective space,'' J. Reine Angew. Math. 431 (1992), 65--74.
  • E. H. Spanier, Algebraic Topology, McGraw-Hill, New York, 1966.
  • D. Sullivan and W. P. Thurston, Manifolds with canonical coordinate charts: Some examples, Enseign. Math. (2) 29 (1983), 15--25.
  • W. P. Thurston, A generalization of the Reeb stability theorem, Topology 13 (1974), 347--352.
  • K. P. Tod, ``Indefinite conformally-ASD metrics on $S^2\times S^2$'' in Further Advances in Twistor Theory, Vol. III: Curved Twistor Spaces, Chapman Hall/CRC Res. Notes Math. 424, Chapman and Hall/CRC, Boca Raton, Fla., 2001, 61--63.
  • F. TrèVes, Hypo-Analytic Structures: Local Theory, Princeton Math. Ser. 40, Princeton Univ. Press, Princeton, 1992.
  • K. Ueno, Classification Theory of Algebraic Varieties and Compact Complex Spaces, Lecture Notes in Math. 439, Springer, Berlin, 1975.
  • C. T. C. Wall, Classification problems in differential topology, V: On certain $6$-manifolds, Invent. Math. 1 (1966), 355--374.; Corrigendum, Invent. Math. 2 (1966), 306.