Duke Mathematical Journal

Nonlocal inversion formulas for the X-ray transform

Allan Greenleaf and Gunther Uhlmann

Full-text: Access denied (no subscription detected)

We're sorry, but we are unable to provide you with the full text of this article because we are not able to identify you as a subscriber. If you have a personal subscription to this journal, then please login. If you are already logged in, then you may need to update your profile to register your subscription. Read more about accessing full-text

Article information

Source
Duke Math. J., Volume 58, Number 1 (1989), 205-240.

Dates
First available in Project Euclid: 20 February 2004

Permanent link to this document
https://projecteuclid.org/euclid.dmj/1077307379

Digital Object Identifier
doi:10.1215/S0012-7094-89-05811-0

Mathematical Reviews number (MathSciNet)
MR1016420

Zentralblatt MATH identifier
0668.44004

Subjects
Primary: 58G15
Secondary: 44A15: Special transforms (Legendre, Hilbert, etc.) 53C65: Integral geometry [See also 52A22, 60D05]; differential forms, currents, etc. [See mainly 58Axx]

Citation

Greenleaf, Allan; Uhlmann, Gunther. Nonlocal inversion formulas for the X-ray transform. Duke Math. J. 58 (1989), no. 1, 205--240. doi:10.1215/S0012-7094-89-05811-0. https://projecteuclid.org/euclid.dmj/1077307379


Export citation

References

  • [AnU] J. L. Antoniano and G. A. Uhlmann, A functional calculus for a class of pseudodifferential operators with singular symbols, Pseudodifferential operators and applications (Notre Dame, Ind., 1984), Proc. Sympos. Pure Math., vol. 43, Amer. Math. Soc., Providence, RI, 1985, pp. 5–16.
  • [Ar] V. I. Arnold, Mathematical methods of classical mechanics, Springer-Verlag, New York, 1978.
  • [Be] A. L. Besse, Manifolds all of whose geodesics are closed, Ergebnisse der Mathematik und ihrer Grenzgebiete [Results in Mathematics and Related Areas], vol. 93, Springer-Verlag, Berlin, 1978.
  • [Bo] R. Bott, On the iteration of closed geodesics and the Sturm intersection theory, Comm. Pure Appl. Math. 9 (1956), 171–206.
  • [BQ] J. Boman and E. T. Quinto, Support theorems for real-analytic Radon transforms, Duke Math. J. 55 (1987), no. 4, 943–948.
  • [D] J. J. Duistermaat, Fourier integral operators, Courant Institute of Mathematical Sciences New York University, New York, 1973.
  • [DGu] J. J. Duistermaat and V. W. Guillemin, The spectrum of positive elliptic operators and periodic bicharacteristics, Invent. Math. 29 (1975), no. 1, 39–79.
  • [GeGi] I. M. Gelfand and G. S. Gindikin, Nonlocal inversion formulas in real integral geometry, Functional Ann. Appl. 11 (1978), no. 3, 173–179.
  • [GeGr1] I. M. Gelfand and M. I. Graev, Integral transformations connected with straight line complexes in a complex affine space, Soviet Math. Dokl. 2 (1961), 809–812.
  • [GeGr2] I. M. Gelfand and M. I. Graev, Line complexes in the space $C^n$, Functional Ann. Appl. 2 (1968), 219–229.
  • [GeGrS1] I. M. Gelfand, M. I. Graev, and Z. Ya. Shapiro, Integral geometry on $k$-dimensional planes, Functional Ann. Appl. 1 (1967), 14–27.
  • [GeGrS2] I. M. Gelfand, M. I. Graev, and Z. Ya. Shapiro, Differential forms and integral geometry, Functional Ann. Appl. 3 (1969), 101–114.
  • [GeGrR] I. M. Gelfand, M. I. Graev, and R. Rosu, The problem of integral geometry for $p$-dimensional planes in real projective space (the nonlocal variant), Operator algebras and group representations, Vol. I (Neptun, 1980), Monogr. Stud. Math., vol. 17, Pitman, Boston, MA, 1984, pp. 192–207.
  • [GeGrV] I. M. Gelfand, M. I. Graev, and N. Ya. Vilenkin, Generalized functions. Vol. 5: Integral geometry and representation theory, Translated from the Russian by Eugene Saletan, Academic Press, New York, 1966.
  • [GoGu] M. Golubitsky and V. Guillemin, Stable mappings and their singularities, Springer-Verlag, New York, 1973.
  • [GH] P. Griffiths and J. Harris, Principles of algebraic geometry, Wiley-Interscience [John Wiley & Sons], New York, 1978.
  • [Gu1] V. Guillemin, On some results of Gelfand in integral geometry, Pseudodifferential operators and applications (Notre Dame, Ind., 1984), Proc. Sympos. Pure Math., vol. 43, Amer. Math. Soc., Providence, RI, 1985, pp. 149–155.
  • [Gu2] V. Guillemin, Cosmology in $(2+1)$-dimensions, cyclic models, and deformations, book manuscript, 1987.
  • [GuS] V. Guillemin and S. Sternberg, Geometric asymptotics, American Mathematical Society, Providence, R.I., 1977.
  • [GuU] V. Guillemin and G. Uhlmann, Oscillatory integrals with singular symbols, Duke Math. J. 48 (1981), no. 1, 251–267.
  • [He] S. Helgason, The Radon transform, Progress in Mathematics, vol. 5, Birkhäuser Boston, Mass., 1980.
  • [Hö] L. Hörmander, Fourier integral operators. I, Acta Math. 127 (1971), no. 1-2, 79–183.
  • [J] F. John, The ultrahyperbolic differential equation with four independent variables, Duke Math. J. 4 (1938), 300–322.
  • [Ki] A. A. Kirillov, A problem of I. M. Gelfand, Soviet Math. Dokl. 2 (1961), 268–269.
  • [K1] W. Klingenberg, Riemannian geometry, de Gruyter Studies in Mathematics, vol. 1, Walter de Gruyter & Co., Berlin, 1982.
  • [Ma] K. Maius, The structure of admissible line complexes in $\mathbbCP^n$, Trans. Mosc. Math. Soc. 39 (1981), 195–226.
  • [Me1] R. B. Melrose, Equivalence of glancing hypersurfaces, Invent. Math. 37 (1976), no. 3, 165–191.
  • [Me2] R. B. Melrose, Equivalence of glancing hypersurfaces. II, Math. Ann. 255 (1981), no. 2, 159–198.
  • [MeT] R. B. Melrose and M. E. Taylor, Near peak scattering and the corrected Kirchhoff approximation for a convex obstacle, Adv. in Math. 55 (1985), no. 3, 242–315.
  • [MeU] R. B. Melrose and G. A. Uhlmann, Lagrangian intersection and the Cauchy problem, Comm. Pure Appl. Math. 32 (1979), no. 4, 483–519.
  • [Mo] J. Moser, Various aspects of integrable Hamiltonian systems, Dynamical systems (Bressanone, 1978), Liguori, Naples, 1980, pp. 137–195.
  • [PS1] D. H. Phong and E. M. Stein, Singular integrals related to the Radon transform and boundary value problems, Proc. Nat. Acad. Sci. U.S.A. 80 (1983), no. 24, Phys. Sci., 7697–7701.
  • [PS2] D. H. Phong and E. M. Stein, Hilbert integrals, singular integrals, and Radon transforms. I, Acta Math. 157 (1986), no. 1-2, 99–157.
  • [Q] E. T. Quinto, The dependence of the generalized Radon transform on defining measures, Trans. Amer. Math. Soc. 257 (1980), no. 2, 331–346.
  • [W1] A. Weinstein, Lectures on symplectic manifolds, American Mathematical Society, Providence, R.I., 1977.
  • [W2] A. Weinstein, On Maslov's quantization condition, Fourier integral operators and partial differential equations (Colloq. Internat., Univ. Nice, Nice, 1974) ed. J. Chazarain, Springer, Berlin, 1975, 341–372. Lecture Notes in Math., Vol. 459.