Duke Mathematical Journal
- Duke Math. J.
- Volume 77, Number 1 (1995), 229-274.
Geometrical finiteness with variable negative curvature
Full-text: Access denied (no subscription detected)
We're sorry, but we are unable to provide you with the full text of this article because we are not able to identify you as a subscriber. If you have a personal subscription to this journal, then please login. If you are already logged in, then you may need to update your profile to register your subscription. Read more about accessing full-text
Article information
Source
Duke Math. J., Volume 77, Number 1 (1995), 229-274.
Dates
First available in Project Euclid: 20 February 2004
Permanent link to this document
https://projecteuclid.org/euclid.dmj/1077286152
Digital Object Identifier
doi:10.1215/S0012-7094-95-07709-6
Mathematical Reviews number (MathSciNet)
MR1317633
Zentralblatt MATH identifier
0877.57018
Subjects
Primary: 53C21: Methods of Riemannian geometry, including PDE methods; curvature restrictions [See also 58J60]
Secondary: 53C20: Global Riemannian geometry, including pinching [See also 31C12, 58B20] 57R99: None of the above, but in this section
Citation
Bowditch, B. H. Geometrical finiteness with variable negative curvature. Duke Math. J. 77 (1995), no. 1, 229--274. doi:10.1215/S0012-7094-95-07709-6. https://projecteuclid.org/euclid.dmj/1077286152
References
- [Ah] L. V. Ahlfors, Fundamental polyhedrons and limit point sets of Kleinian groups, Proc. Nat. Acad. Sci. U.S.A. 55 (1966), 251–254.Mathematical Reviews (MathSciNet): MR33:3175
Zentralblatt MATH: 0132.30801
Digital Object Identifier: doi:10.1073/pnas.55.2.251
JSTOR: links.jstor.org - [An] M. Anderson, The Dirichlet problem at infinity for manifolds of negative curvature, J. Differential Geom. 18 (1983), no. 4, 701–721.Mathematical Reviews (MathSciNet): MR85m:58178
Zentralblatt MATH: 0541.53036
Project Euclid: euclid.jdg/1214438178 - [BaGS] W. Ballmann, M. Gromov, and V. Schroeder, Manifolds of Nonpositive Curvature, Progr. Math., vol. 61, Birkhäuser, Boston, 1985.
- [BeM] A. Beardon and B. Maskit, Limit points of Kleinian groups and finite sided fundamental polyhedra, Acta Math. 132 (1974), 1–12.Mathematical Reviews (MathSciNet): MR48:11489
Zentralblatt MATH: 0277.30017
Digital Object Identifier: doi:10.1007/BF02392106 - [Bo1] B. H. Bowditch, Geometrical finiteness for hyperbolic groups, J. Funct. Anal. 113 (1993), no. 2, 245–317.Mathematical Reviews (MathSciNet): MR94e:57016
Zentralblatt MATH: 0789.57007
Digital Object Identifier: doi:10.1006/jfan.1993.1052 - [Bo2] B. H. Bowditch, Discrete parabolic groups, J. Differential Geom. 38 (1993), no. 3, 559–583.Mathematical Reviews (MathSciNet): MR94h:53046
Zentralblatt MATH: 0793.53029
Project Euclid: euclid.jdg/1214454483 - [Bo3] B. H. Bowditch, Some results on the geometry of convex hulls in manifolds of pinched negative curvature, Comment. Math. Helv. 69 (1994), no. 1, 49–81.Mathematical Reviews (MathSciNet): MR94m:53044
Zentralblatt MATH: 0967.53022
Digital Object Identifier: doi:10.1007/BF02564474 - [Br] M. R. Bridson, Geodesics and curvature in metric simplicial complexes, Group Theory from a Geometrical Viewpoint (Trieste, 1990) eds. E. Ghys, A. Haefliger, and A. Verjovsky, World Scientific, River Edge, NJ, 1991, pp. 373–463.
- [CE] J. Cheeger and D. G. Ebin, Comparison Theorems in Riemannian Geometry, North-Holland Math. Lib., vol. 9, North-Holland, Amsterdam, 1975.
- [EM] D. B. A. Epstein and A. Marden, Convex hulls in hyperbolic space, a theorem of Sullivan, and measured pleated surfaces, Analytical and Geometric Aspects of Hyperbolic Space (Coventry/Durham, 1984) ed. D. B. A. Epstein, London Math. Soc. Lecture Note Series, vol. 111, Cambridge Univ. Press, Cambridge, 1987, pp. 113–253.
- [G] W. M. Goldman, Complex hyperbolic Kleinian groups, Complex Geometry (Osaka, 1990), Lecture Notes in Pure and Appl. Math., vol. 143, Dekker, New York, 1993, pp. 31–52.
- [GP] W. M. Goldman and J. R. Parker, On the horospherical geometry of complex hyperbolic space, preprint, Univ. of Maryland, 1991.
- [HI] E. Heintze and H. C. Im Hof, Geometry of horospheres, J. Differential Geom. 12 (1977), no. 4, 481–491.Mathematical Reviews (MathSciNet): MR80a:53051
Zentralblatt MATH: 0434.53038
Project Euclid: euclid.jdg/1214434219 - [M] A. Marden, The geometry of finitely generated kleinian groups, Ann. of Math. (2) 99 (1974), 383–462.Mathematical Reviews (MathSciNet): MR50:2485
Zentralblatt MATH: 0282.30014
Digital Object Identifier: doi:10.2307/1971059
JSTOR: links.jstor.org - [Pa] J. R. Parker, Dirichlet polyhedra for parabolic cyclic groups acting on complex hyperbolic space, preprint, Warwick Univ., 1992.
- [Ph] M. B. Phillips, Dirichlet polyhedra for cyclic groups in complex hyperbolic space, Proc. Amer. Math. Soc. 115 (1992), no. 1, 221–228.Mathematical Reviews (MathSciNet): MR93a:32042
Zentralblatt MATH: 0768.53033
Digital Object Identifier: doi:10.2307/2159589
JSTOR: links.jstor.org - [S] M. Spivak, A Comprehensive Introduction to Differential Geometry, 2nd ed., Publish or Perish, Wilmington, Del., 1979.
- [T] W. P. Thurston, The geometry and topology of $3$-manifold, Princeton Univ., Department of Mathematics, 1979.

- You have access to this content.
- You have partial access to this content.
- You do not have access to this content.
More like this
- Local Fatou theorem and the density of energy on manifolds of negative curvature
Mouton, Frédéric, Revista Matemática Iberoamericana, 2007 - Surfaces of a Constant Negative Curvature
Gharib, G. M., International Journal of Differential Equations, 2012 - Forced hyperbolic mean curvature flow
Mao, Jing, Kodai Mathematical Journal, 2012
- Local Fatou theorem and the density of energy on manifolds of negative curvature
Mouton, Frédéric, Revista Matemática Iberoamericana, 2007 - Surfaces of a Constant Negative Curvature
Gharib, G. M., International Journal of Differential Equations, 2012 - Forced hyperbolic mean curvature flow
Mao, Jing, Kodai Mathematical Journal, 2012 - Hypersurfaces with nonnegative scalar curvature
Huang, Lan-Hsuan and Wu, Damin, Journal of Differential Geometry, 2013 - The isometry groups of compact manifolds with almost negative Ricci curvature
Katsuda, Atsushi and Kobayashi, Takeshi, Tohoku Mathematical Journal, 2018 - Asymptotic properties of coverings in negative curvature
Sambusetti, Andrea, Geometry & Topology, 2008 - Cross curvature flow on a negatively curved solid torus
DeBlois, Jason, Knopf, Dan, and Young, Andrea, Algebraic & Geometric Topology, 2010 - Prescribing the behaviour of geodesics in negative curvature
Parkkonen, Jouni and Paulin, Frédéric, Geometry & Topology, 2010 - Global behaviour of solutions to a parabolic mean curvature equation
Kawohl, Bernd and Kutev, Nickolai, Differential and Integral Equations, 1995 - Differential Geometry of Curved Exponential Families-Curvatures and Information Loss
Amari, Shun-Ichi, The Annals of Statistics, 1982