Bulletin (New Series) of the American Mathematical Society
- Bull. Amer. Math. Soc. (N.S.)
- Volume 23, Number 2 (1990), 251-268.
Multiplication of distributions
Full-text: Open access
Article information
Source
Bull. Amer. Math. Soc. (N.S.), Volume 23, Number 2 (1990), 251-268.
Dates
First available in Project Euclid: 4 July 2007
Permanent link to this document
https://projecteuclid.org/euclid.bams/1183555881
Mathematical Reviews number (MathSciNet)
MR1028141
Zentralblatt MATH identifier
0731.46023
Subjects
Primary: 46F10: Operations with distributions 35D05 35D10
Citation
Colombeau, J. F. Multiplication of distributions. Bull. Amer. Math. Soc. (N.S.) 23 (1990), no. 2, 251--268. https://projecteuclid.org/euclid.bams/1183555881
References
- 1. M. Adamczewski, J. F. Colombeau, and A. Y. Le Roux, Convergence of numerical schemes involving powers of the Dirac delta function, J. Math. Anal. Appl. 195 (1) 1990, 172-185.Zentralblatt MATH: 0691.65067
Mathematical Reviews (MathSciNet): MR1031183
Digital Object Identifier: doi:10.1016/0022-247X(90)90439-M - 2. A. Y. Barka, J. F. Colombeau, and B. Perrot, A numerical modeling of the fluid/fluid acoustic dioptra, J. Acoustique (in press), 1989.
- 3. H. A. Biagioni, Introduction to a nonlinear theory of generalized functions, Notas de Matematica, IMECC, UNICAMP, 13100, Campinas, SP Brazil, 1988. Second edition: A nonlinear theory of generalized functions, Lecture Notes in Math., vol. 1421, Springer-Verlag, Berlin, Heidelberg, New York, 1990.
- 4. N. N. Bogoliubov and D. V. Shirkov, Introduction to the theory of quantized fields, Interscience (various editions).Zentralblatt MATH: 0088.21701
- 5. J. J. Cauret, J. F. Colombeau, and A. Y. Le Roux, Discontinuous generalized solutions of nonlinear nonconservative hyperbolic equations, J. Math. Anal. Appl. 139 (2) (1989), 552-573.Zentralblatt MATH: 0691.35057
Mathematical Reviews (MathSciNet): MR996979
Digital Object Identifier: doi:10.1016/0022-247X(89)90129-7 - 6. J. F. Colombeau, Differential calculus and holomorphy: Real and complex analysis in locally convex spaces, North-Holland, Amsterdam, 1982.
- 7. J. F. Colombeau, A multiplication of distributions, J. Math. Anal. Appl. 94 (1) (1983), 96-115.Zentralblatt MATH: 0519.46045
Mathematical Reviews (MathSciNet): MR701451
Digital Object Identifier: doi:10.1016/0022-247X(83)90007-0 - 8. J. F. Colombeau, New generalized functions and multiplication of distributions, NorthHolland, Amsterdam, 1984.
- 9. J. F. Colombeau, Elementary introduction to new generalized functions, North-Holland, Amsterdam, 1985.
- 10. J. F. Colombeau, The elastoplastic shock problem as an example of the resolution of ambiguities in the multiplication of distributions, J. Math. Phys. 30 (10) (1989), 2273-2279.Zentralblatt MATH: 0711.73050
Mathematical Reviews (MathSciNet): MR1016295
Digital Object Identifier: doi:10.1063/1.528554 - 11. J. F. Colombeau, A method to obtain correct jump conditions from systems in non-conservative form: new formulas and new numerical schemes, Num. Appl. Math. (in press).
- 12. J. F. Colombeau and M. Langlais, An existence-uniqueness result for a nonlinear parabolic equation with Cauchy data distribution, J. Math. Anal. Appl. 145 (1) (1990), 186-196.Zentralblatt MATH: 0701.35042
- 13. J. F. Colombeau and A. Y. Le Roux, Numerical techniques in elastodynamics, Lecture Notes in Math., vol. 1270, Springer-Verlag, Berlin and New York, 1986, pp. 104-114.Zentralblatt MATH: 0644.73039
- 14. J. F. Colombeau and A. Y. Le Roux, Multiplications of distributions in elasticity and elastoplasticity, J. Math. Physics. 29 (2) (1988), 315-319.Zentralblatt MATH: 0646.76007
Mathematical Reviews (MathSciNet): MR927013
Digital Object Identifier: doi:10.1063/1.528069 - 15. J. F. Colombeau and A. Y. Le Roux, Numerical methods for hyperbolic systems in nonconservative form using products of distributions, Advances for computer methods in PDE 6 IMACS, 1987, pp. 28-37. Far better results can be found in: P. DeLuca Modelisation numérique en elastoplasticité dynamique, thesè, Bordeaux, 1989.
- 16. J. F. Colombeau and A. Y. Le Roux, Generalized functions and products appearing in equations of engineering and physics, preprint.
- 17. J. F. Colombeau, A. Y. Le Roux, A. Noussair, and B. Perrot, Microscopic profile of shock waves and ambiguities in multiplications of distributions, SIAM J. Numer. Anal. 26 (4) (1989), 871-882.Zentralblatt MATH: 0674.76049
Mathematical Reviews (MathSciNet): MR1005514
Digital Object Identifier: doi:10.1137/0726048 - 18. J. F. Colombeau and B. Perrot, A numerical method for the solution of nonlinear systems of physics involving multiplications of distributions, preprint.
- 19. R. Di Perna, Measure valued solutions to conservation laws, Arch. Rational Mech. Anal. 88 (1985), pp. 223-270.Zentralblatt MATH: 0616.35055
Mathematical Reviews (MathSciNet): MR775191
Digital Object Identifier: doi:10.1007/BF00752112 - 20. Y. C. Fung, A first course in continuum mechanics, Prentice Hall, Engle-wood Cliffs, NJ, 1969.
- 21. A. Marzouk and B. Perrot, Regularity results for generalized polutions of algebraic equations and algebraic differential equations, preprint.
- 22. M. Oberguggenberger, Products of distributions, J. Reine Angew. Math. 365 (1986), 1-11.
- 23. M. Oberguggenberger, Generalized solutions to semilinear hyperbolic systems, Monatshe. Math. 103(1987), 133-144.Zentralblatt MATH: 0615.35054
Mathematical Reviews (MathSciNet): MR881719
Digital Object Identifier: doi:10.1007/BF01630683 - 24. M. Oberguggenberger, Hyperbolic systems with discontinuous coefficients: generalized solution and a transmission problem in acoustics, J. Math. Anal. Appl. 42 (2) (1989), 452-467.Zentralblatt MATH: 0705.35146
Mathematical Reviews (MathSciNet): MR1014590
Digital Object Identifier: doi:10.1016/0022-247X(89)90014-0 - 25. M. Oberguggenberger, Hyperbolic systems with discontinuous coefficients: examples, Generalized Functions, Convergence Structure and Applications (B. Stankovic, E. Pap, S. Pilipovic, V. S. Vladimirov, eds.), Plenum, New York and London, 1988, pp. 257-266.Zentralblatt MATH: 0726.35133
Mathematical Reviews (MathSciNet): MR975737
Digital Object Identifier: doi:10.1007/978-1-4613-1055-6_26 - 26. E. E. Rosinger, Generalized solutions to Nonlinear PDE, North-Holland, Amsterdam, 1987.Mathematical Reviews (MathSciNet): MR918145
- 27. L. A. Rubel, Solutions of algebraic differential equations, J. Differential Equations 49 (1983), 441-452.Zentralblatt MATH: 0475.12029
Mathematical Reviews (MathSciNet): MR715696
Digital Object Identifier: doi:10.1016/0022-0396(83)90006-2 - 28. L. A. Rubel, Some research problems about algebraic differential equations, Trans. Amer. Math. Soc. 280 (1983), 43-52.Zentralblatt MATH: 0532.34009
Mathematical Reviews (MathSciNet): MR712248
Digital Object Identifier: doi:10.1090/S0002-9947-1983-0712248-1 - 29. L. A. Rubel, Generalized solutions of algebraic differential equations, J. Differential Equations 62 (1986), 242-251.Zentralblatt MATH: 0578.12017
Mathematical Reviews (MathSciNet): MR833420
Digital Object Identifier: doi:10.1016/0022-0396(86)90100-2
American Mathematical Society

- You have access to this content.
- You have partial access to this content.
- You do not have access to this content.
More like this
- Discrete, continuous and conditional multiple window scan statistics
Wu, Tung-Lung, Glaz, Joseph, and Fu, James C., Journal of Applied Probability, 2013 - Exponential and gamma distributions on positive semigroups, with applications to Dirichlet distributions
Siegrist, Kyle, Bernoulli, 2007 - Proper and Improper Multiple Imputation
Feodor Nielsen, Soren, International Statistical Review, 2003
- Discrete, continuous and conditional multiple window scan statistics
Wu, Tung-Lung, Glaz, Joseph, and Fu, James C., Journal of Applied Probability, 2013 - Exponential and gamma distributions on positive semigroups, with applications to Dirichlet distributions
Siegrist, Kyle, Bernoulli, 2007 - Proper and Improper Multiple Imputation
Feodor Nielsen, Soren, International Statistical Review, 2003 - On free and classical type G distributions
Arizmendi, Octavio, Barndorff-Nielsen, Ole E., and Pérez-Abreu, Víctor, Brazilian Journal of Probability and Statistics, 2010 - Normality preserving operations for Cantor series expansions and associated fractals, I
Airey, Dylan and Mance, Bill, Illinois Journal of Mathematics, 2015 - An Optimum Solution to the $k$-Sample Slippage Problem for the Normal Distribution
Paulson, Edward, The Annals of Mathematical Statistics, 1952 - An Asymptotic Evaluation of the Tail of a Multiple Symmetric $\alpha$- Stable Integral
Samorodnitsky, Gennady and Szulga, Jerzy, The Annals of Probability, 1989 - On the Distribution of a Multiple Correlation Matrix: Non-Central Multivariate Beta Distributions
Srivastava, M. S., The Annals of Mathematical Statistics, 1968 - $U$-Statistics of Random-Size Samples and Limit Theorems for Systems of Markovian Particles with Non-Poisson Initial Distributions
Feldman, Raisa Epstein and Rachev, Svetlozar, The Annals of Probability, 1993 - Central limit theorems for sequences of multiple stochastic integrals
Nualart, David and Peccati, Giovanni, The Annals of Probability, 2005
