Bulletin (New Series) of the American Mathematical Society

Review: A. G. Dragalin, Mathematical intuitionism. Introduction to proof theory

Ieke Moerdijk

Full-text: Open access

Article information

Bull. Amer. Math. Soc. (N.S.), Volume 22, Number 2 (1990), 301-304.

First available in Project Euclid: 4 July 2007

Permanent link to this document


Moerdijk, Ieke. Review: A. G. Dragalin, Mathematical intuitionism. Introduction to proof theory. Bull. Amer. Math. Soc. (N.S.) 22 (1990), no. 2, 301--304. https://projecteuclid.org/euclid.bams/1183555625

Export citation


  • 1. E. W. Beth, Semantic construction of intuitionistic logic, Kon. Ned. Ak. Wet. 19 (1956), 357-388.
  • 2. P. J. Cohen, Set theory and the continuum hypothesis, Benjamin, New York, 1966.
  • 3. E. Dubuc, C-schemes, Amer. J. Math 103 (1981).
  • 4. M. Fourman and D. Scott, Sheaves and logic, in Application of Sheaves, Springer LNM 753, 1979, pp. 280-401.
  • 5. A. Grothendieck, et al., Theorie des topos et cohomologie étale des schémes, Springer LNM 269, 1972.
  • 6. J. M. E. Hyland, The effective topos, The L. E. J. Brouwer Centenary Sympos. (A. S. Troelstra, D. van Dalen, eds.), North-Holland, Amsterdam, 1982.
  • 7. S. C. Kleene, On the interpretation of intuitionistic number theory, J. Symbolic Logic 10 (1945), 109-124.
  • 8. A. Kock, Synthetic differential geometry, Cambridge Univ. Press, Cambridge, United Kingdom, 1981.
  • 9. S. Kripke, Semantical analysis of intuitionistic logic, I, in Formal Systems and Recursive Functions (J. Crossely and M. A. E. Dummett, eds.), North-Holland, Amsterdam, 1965, pp. 92-130.
  • 10. R. Lavendhomme, Leçons de géométrie différentielle synthétique naïve, CIACO, Louvain-la-Neuve, 1987.
  • 11. I. Moerdijk and G. E. Reyes, A smooth version of the Zariski topos, Adv. Math. 65 (1987), 229-253.
  • 12. A. Robinson, Non-standard analysis, North-Holland, Amsterdam, 1966.
  • 13. M. Tierney, Sheaf theory and the continuum hypothesis, in Toposes, Algebraic Geometry and Logic (F. W. Lawvere, ed.), Springer LNM 274, 1972.
  • 14. A. S. Troelstra and D. van Dalen, Constructivism in mathematics, vol. II, North-Holland, Amsterdam, 1988.