Bulletin (New Series) of the American Mathematical Society

There are asymptotically far fewer polytopes than we thought

Jacob E. Goodman and Richard Pollack

Full-text: Open access

Article information

Bull. Amer. Math. Soc. (N.S.) Volume 14, Number 1 (1986), 127-129.

First available in Project Euclid: 4 July 2007

Permanent link to this document

Mathematical Reviews number (MathSciNet)

Zentralblatt MATH identifier

Primary: 52A25
Secondary: 05A15: Exact enumeration problems, generating functions [See also 33Cxx, 33Dxx] 14G30 51M20: Polyhedra and polytopes; regular figures, division of spaces [See also 51F15]


Goodman, Jacob E.; Pollack, Richard. There are asymptotically far fewer polytopes than we thought. Bull. Amer. Math. Soc. (N.S.) 14 (1986), no. 1, 127--129.https://projecteuclid.org/euclid.bams/1183552790

Export citation


  • 1. N. Alon, The number of polytopes, configurations, and real matroids, preprint.
  • 2. J. E. Goodman and R. Pollack, Multidimensional sorting, SIAM J. Comput. 12 (1983), 484-507.
  • 3. J. E. Goodman and R. Pollack, Upper bounds for configurations and polytopes in Rd, Discrete Comp. Geom. (to appear).
  • 4. B. Grünbaum, Convex polytopes, Interscience-Wiley, London, 1967.
  • 5. V. Klee, The number of vertices of a convex polytope, Canad. J. Math. 16 (1964), 701-720.
  • 6. J. Milnor, On the Betti numbers of real varieties, Proc. Amer. Math. Soc. 15 (1964), 275-280.
  • 7. I. Shemer, Neighborly polytopes, Israel J. Math. 43 (1982), 291-314.