Bulletin (New Series) of the American Mathematical Society

The mathematical approach to the sonic barrier

Cathleen Synge Morawetz

Full-text: Open access

Article information

Source
Bull. Amer. Math. Soc. (N.S.), Volume 6, Number 2 (1982), 127-145.

Dates
First available in Project Euclid: 4 July 2007

Permanent link to this document
https://projecteuclid.org/euclid.bams/1183548680

Mathematical Reviews number (MathSciNet)
MR640941

Zentralblatt MATH identifier
0506.76064

Subjects
Primary: 76H05: Transonic flows
Secondary: 35M05

Citation

Morawetz, Cathleen Synge. The mathematical approach to the sonic barrier. Bull. Amer. Math. Soc. (N.S.) 6 (1982), no. 2, 127--145. https://projecteuclid.org/euclid.bams/1183548680


Export citation

References

  • L. Bers, Mathematical aspects of subsonic and transonic gas dynamics, Wiley, New York, 1958.
  • A. V. Bitsadze, Equations of the mixed type, Translated by P. Zador, MacMillan, New York, 1964.
  • G. Guderley, Theorie Schallnaher Störmungen, Springer-Verlag, 1957. Theory of transonic flow, Pergamon Press, New York, 1952.
  • A. R. Manwell, The Hodograph equations, Hafner Publishing, New York, 1971.
  • J. Cole, Modern developments in transonic flow, SIAM J. Appl. Math. (4) 29 (1975), 763-787.
  • C. S. Morawetz, Mixed equations and transonic flow, Rend. Mat. e Appl. (5) 25 (1966), 482-509.
  • C. S. Morawetz, Well-posed problems and transonic flow, Fluid Dynamics Transactions, Polish Academy of Sciences, 6, Part I, 1972, pp. 325-333.
  • Internat. Union of Theoretical and Applied Mechanics, Symposium Transsonicum, Springer-Verlag, Berlin and New York, Aachen, 1962, K. Oswatitsch (ed.), 1964, Göttingen, 1975, K. Oswatitsch and D. Rues (eds.), 1976.
  • Articles on the state of computational transonic flow are to be found in "Numerical Methods in Fluid Dynamics", Hemisphere Publishing Corporation, 1978, H. J. Wirz and J. J. Smolderen (eds.)
  • W. F. Ballhaus, Some recent progress in transonic flow computations, pp. 155-236.
  • W. Schmidt, Progress in transonic flow computations. Analysis and design methods for three dimensional flows, pp. 299-335.
  • A. Jameson, Transonic flow computations, pp. 1-154.
  • 1. W. F. Ballhaus and P. M. Goorjian, Implicit finite difference computations of unsteady transonic flows about airfoils, A.I.A.A. Journal 15 (1977); see also 17 (1979).
  • 2. F. Bauer, P. Garabedian and D. Korn, A theory of supercritical wing sections with computer programs and examples, Lecture Notes in Econom. and Math. Syst., vol. 66, Springer-Verlag, Berlin and New York, 1972. See also with A. Jameson, II, 108, same series and III, 150, same series.
  • 3. L. Bers, Existence and uniqueness of a subsonic flow past a given profile, Comm. Pure Appl. Math. 7 (1945), 441-504.
  • 4. H. Brezis and G. Stampacchia, The hodograph method in fluid dynamics in the light of variational inequalities, Arch. Rational Mech. Anal. 61 (1976), 1-18.
  • 5. A. Busemann, Widerstand bei geschwindigkeiten naher der schallgeschwindigkeiten, Proc. Third Internat. Congr. Appl. Mech. 1 (1930), 282-285.
  • 6. A. Busemann, The nonexistence of transonic potential flow, Proc. Sympos. Appl. Math., vol. 4, 1953, pp. 282-285.
  • 7. S. A. Chaplygin, On gas jets, Sci. Mem. Moscow Univ. Math. Phys., No. 21, 1904, pp. 1-21. Trans. NACA TM. 1063 (1944).
  • 8. T. M. Cherry, Flow of a compressible fluid about a cylinder, Proc. Roy. Soc. London Ser. A 192 (1947), 45-79; A 196 (1949), 1-31; 32-36.
  • 9. Pamela Cooke, A uniqueness proof for a transonic flow problem, Indiana Univ. Math. J. 27 (1978), 51-71.
  • 10. R. Engquist and S. Osher, Stable and entropy satisfying approximations for transonic flow calculations, Math. Comp. 34 (1980), 45-75.
  • 11. G. J. Fix, A mixed finite element scheme for transonic flows, ICASE, Hampton, Virginia, Report 76-25, 1976.
  • 12. F. I. Frankl, On the appearance of compression shocks in subsonic speeds, Prikl. Mat. Meh. 11 (1947), 199-202.
  • 13. K. O. Friedrichs, Symmetrie positive linear differential equations, Comm. Pure Appl. Math. 11 (1958), 333-418.
  • 14. K. Y. Fung, H. Sobieczky and R. Seebass, Shockfree wing design, A.I.A.A. Journal 18, Article No. 79-1557R, 1980.
  • 15. P. Garabedian and G. McFadden, Design of supercritical swept wings (preprint).
  • 16. P. Germain, Ecoulements transsoniques homogênes, Progress in Aeronautical Sciences, D. Küchenbaum and L. H. G. Sterne (eds.), Pergamon Press, New York, 1964.
  • 17. D. Gilbarg, Comparison methods in the theory of subsonic flows, J. Rational Mech. Anal. 2 (1953), 223-251.
  • 18. R. Glowinski and O. Pironneaux, Calcul d'écoulements transonics par des méthodes d'elements finis et de contrôle optimal, Computing Methods in Applied Sciences and Engineering (Sec. Internat. Sympos., Versailles), Part I, Lecture Notes in Econom. and Math. Systems, no. 134, Springer-Verlag, New York, 1976.
  • 19. G. Guderley, On the presence of shocks in mixed subsonic-supersonic flow patterns, Adv. in Appl. Mech. 3 (1953), 145-184.
  • 20. R. A. Hummel, The hodograph method for convex profiles (to appear).
  • 21. A. Jameson, Iterative solution of transonic flow over airfoils and wings including flows at Mach 1, Comm. Pure Appl. Math. 27 (1974), 283-309.
  • 22. R. T. Jones, High speed wing theory, Princeton Univ. Press, Princeton, N.J., 1960.
  • 23. T. von Karman, Compressibility effects in aerodynamics, J. Aeronaut. Sci. 8 (1941), 337-356.
  • 24. T. von Karman, The engineer grapples with nonlinear problems, Bull. Amer. Math. Soc. 46 (1940), 615-683.
  • 25. E. Koppe and G. Meier, Erfahrungen mit optischen methoden bei der Untersuchung transonischer Strömungen, Jahrgang 5 (1965), 150-157.
  • 26. S. N. Kruzkov, First order quasilinear equations in several independent variables, Mat. Sb. (N.S.) 81 (123) (1970), 228-255, Amer. Math. Soc. Transl. (1971).
  • 27. M. A. Lavrent'ev and A. Bitsadze, On the problem of equations of mixed type, Doklady 70 (1950), 373-376. See also pp. 561-564.
  • 28. M. J. Lighthill, On the hodograph transformation for high-speed flow. II. A flow with circulation. Quart. J. Mech. Appl. Math. 1 (1948), 442-450. The hodograph transformation in trans-sonic flow. III. Flow around a body, Proc. Roy. Soc. London Ser. A 191 (1947), 341-369.
  • 29. R. Magnus and H. Yoshihara, Inviscid transonic flow over airfoils, A.I.A.A. Journal 8 (1970), 2157-2162.
  • 30. Th. Meyer, Über zwei dimensionale Bewegungvorgange in einem Gas das mit Überschallgeschwingigkeitstrom, Forschungs hefte 62 (1908).
  • 31. M. S. Mock, Systems of conservation laws of mixed type, J. Differential Equations 37 (1980), 70-88.
  • 32. C. S. Morawetz, A weak solution for a system of equations of elliptic-hyperbolic type, Comm. Pure Appl. Math. 11 (1958), 315-332.
  • 33. C. S. Morawetz, On the non-existence of continuous transonic flows past profiles. I, Comm. Pure Appl. Math. 9 (1956), 45-68; II 10 (1957), 107-132; III 11 (1958), 129-144. See also 17 (1964), 357-367.[Note]
  • 34. C. S. Morawetz, The Dirichlet problem for the Tricomi equation, Comm. Pure Appl. Math. 23 (1970), 587-601.
  • 35. E. M. Murman and J. D. Cole, Calculation of plane steady transonic flows, A.I.A.A. Journal 9 (1971), 114-121.
  • 36. G. Y. Nieuwland, The computation by Lighthill's method of transonic potential flow around a family of quasi-elliptical aerofoils, Netherland N.L.R. Tech. Rep. T83, (1964). See also T.1 72.
  • 37. O. A. Oleinik, Quasi-linear second order parabolic equations with many independent variables, Seminari 1962-63 di Analisi, algebra, geometria e topologia. Istituto Nazionale di alta matematica Edizione Cremonese, 1965.
  • 38. H. H. Pearcey, The aerodynamic design of section shapes for swept wings, Adv. in Aeronautical Sciences 3 (1962) 277-320.
  • 39. J. Rayleigh, On the flow of a compressible fluid past an obstacle, Philos. Mag. 32 (1916), 1-6.
  • 40. F. Ringleb, Exakte Lösungen der Differential gleichungen einer adiahatischen Gasströmung, Zeitschrift für angewandte Mathematik und Mechanik 20 (1940), 185-198.
  • 41. M. Shiffman, On the existence of subsonic flows of a compressible fluid, J. Rational Mech. Anal. 1 (1952), 605-652.
  • 42. G. I. Taylor, The flow around a body moving in a compressible fluid, Proc. Third Internat. Congr. Appl. Mech. 1 (1930), 263-275.
  • 43. F. Tricomi, Sulla equazione lineari alle derivate parziali di secondo ordine, di tipo misto, Rendiconti Atti del Accademia Nazionale dei Lincei, Series 5 14 (1923), 134-247.
  • 44. R. T. Whitcomb, Review of NASA supercritical airfoils, Ninth Internat. Congr. Aeronautical Sciences, Haifa, 1974.