Bulletin (New Series) of the American Mathematical Society

Marston Morse and his mathematical works

Raoul Bott

Full-text: Open access

Article information

Source
Bull. Amer. Math. Soc. (N.S.), Volume 3, Number 3 (1980), 907-950.

Dates
First available in Project Euclid: 4 July 2007

Permanent link to this document
https://projecteuclid.org/euclid.bams/1183547681

Mathematical Reviews number (MathSciNet)
MR585177

Zentralblatt MATH identifier
0469.01012

Citation

Bott, Raoul. Marston Morse and his mathematical works. Bull. Amer. Math. Soc. (N.S.) 3 (1980), no. 3, 907--950. https://projecteuclid.org/euclid.bams/1183547681


Export citation

References

  • 1. Marston Morse, Proof of a general theorem on the linear dependence of P analytic functions of a single variable, Bull. Amer. Math. Soc. 23 (1916), 114-117.
  • 2. Marston Morse, A one-to-one representation of geodesics on a surface of negative curvature, Amer. J. Math. 43 (1921), 33-51.
  • 3. Marston Morse, Recurrent geodesics on a surface of negative curvature, Trans. Amer. Math. Soc. 22 (1921), 84-110.
  • 4. Marston Morse, A fundamental class of geodesics on any closed surface of genus p greater than one, Trans. Amer. Math. Soc. 26 (1924), 25-61.
  • 5. Marston Morse, Relations between the critical points of a real function of n independent variables, Trans. Amer. Math. Soc. 27 (1925), 345-396.
  • 6. Marston Morse, The analysis and analysis situs of regular n-spreads in (n + s)-space, Proc. Nat. Acad. Sci. 13 (1927), 813-817.
  • 7. Marston Morse, The foundations of a theory of the calculus of variations in the large, Trans. Amer. Math. Soc. 30 (1928), 213-274.
  • 8. Marston Morse, Singular points of vector fields under general boundary conditions, Amer. J. Math. 51 (1929), 165-178.
  • 9. Marston Morse, The critical points of functions and the calculus of variations in the large, Bull. Amer. Math. Soc. 35 (1929), 38-54.
  • 10. Marston Morse, The foundations of the calculus of variations in the large in m-space (1st paper), Trans. Amer. Math. Soc. 31 (1929), 379-404.
  • 11. Marston Morse, Closed extremals, Proc. Nat. Acad. Sci. 15 (1929), 856-959.
  • 12. Marston Morse, The problems of Lagrange and Mayer under general end conditions, Proc. Nat. Acad. Sci. 16 (1930), 229-233.
  • 13. Marston Morse, A generalization of the Sturm-separation and comparison theorems in n-space, Math. Ann. 103 (1930), 52-69.
  • 14. Marston Morse, The critical points of a function of n variables, Proc. Nat. Acad. Sci. 16 (1930), 777-779.
  • 15. Marston Morse, The critical points of a function of n variables, Trans. Amer. Math. Soc. 33 (1931), 72-91.
  • 16. Marston Morse, The order of vanishing of the determinant of a conjugate base, Proc. Nat. Acad. Sci. 17 (1931), 319-320.
  • 17. Marston Morse, The problems of Lagrange and Mayer with variable endpoints, by M. Morse and Sumner Byron Myers, Proc. Amer. Acad. Arts and Sci. 66 (1931), 235-253.
  • 18. Marston Morse, Closed extremals (1st paper), Ann. of Math. (2) 32 (1931), 549-566.
  • 19. Marston Morse, Sufficient conditions in the problem of Lagrange with fixed endpoints, Ann. of Math. (2) 32 (1931), 567-577.
  • 20. Marston Morse, Sufficient conditions in the problem of Lagrange with variable end conditions, Amer. J. Math. 53 (1931), 517-546.
  • 21. Marston Morse, The foundations of a theory of the calculus of variations in the large in m-space (2nd paper), Trans. Amer. Math. Soc. 32 (1930), 599-631.
  • 22. Marston Morse, A characterization of fields in the calculus of variations, by M. Morse and S. B. Littauer, Proc. Nat. Acad. Sci. 18 (1932), 724-730.
  • 23. Marston Morse, The calculus of variations in the large, Verhandlungen des Internationalen Mathematiker-Kongresses Zürich, 1932, Vol. 1, pp. 173-188.
  • 24. Marston Morse, Does instability imply transitivity?, Proc. Nat. Acad. Sci. 20 (1934), 46-50.
  • 25. Marston Morse, On certain invariants of closed extremals, by M. Morse and Everett Pitcher, Proc. Nat Acad. Sci. 20 (1934), 282-287.
  • 26. Marston Morse, The critical point theory under general boundary conditions, by M. Morse and George Booth Van Schaack, Ann. of Math. (2) 35 (1934), 545-571.
  • 27. Marston Morse, Sufficient conditions in the problem of Lagrange without assumptions of normalcy, Trans. Amer. Math. Soc. 37 (1935), 147-160.
  • 28. Marston Morse, Instability and transitivity, Jour. de Mathématiques, Paris 14 (1935), 49-71.
  • 29. Marston Morse, Abstract critical sets, by M. Morse and George B. Van Schaack, Proc. Nat. Acad. Sci. 21 (1935), 258-263.
  • 30. Marston Morse, Generalized concavity theorems, Proc. Nat. Acad. Sci. 21 (1935), 359-362.
  • 31. Marston Morse, Three theorems on the envelope of extremals, Proc. Nat. Acad. Sci. 21 (1935), 619-621; Bull. Amer. Math. Soc. 42 (1936), 136-144.
  • 32. Marston Morse, Functional topology and abstract variational theory, Proc. Nat. Acad. Sci. 22 (1936), 313-319.
  • 33. Marston Morse, Critical point theory under general boundary conditions, by M. Morse and George B. Van Schaack, Duke Math. J. 2 (1936), 220-242.
  • 34. Marston Morse, Singular quadratic functionals, by M. Morse and Walter Leighton, Trans. Amer. Math. Soc. 40 (1936), 252-286.
  • 35. Marston Morse, A special parametrization of curves, Bull. Amer. Math. Soc. 42 (1936), 915-922.
  • 36. Marston Morse, Functional topology and abstract variational theory, Ann. of Math. (2) 38 (1937), 386-449.
  • 37. Marston Morse, The index theorem in the calculus of variations, Duke Math. J. 4 (1938), 231-246.
  • 38. Marston Morse, Functional topology and abstract variational theory, Proc. Nat. Acad. Sci. 24 (1938), 326-330.
  • 39. Marston Morse, Symbolic dynamics, by M. Morse and G. A. Hedlund, Amer. J. Math. 60 (1938), 815-866.
  • 40. Marston Morse, On the existence of minimal surfaces of general critical types, by M. Morse and C. B. Tompkins, Proc. Nat. Acad. Sci. 25 (1939), 153-158; Ann. of Math. (2) 40 (1939), 443-472.
  • 41. Marston Morse, Sur le calcul des variations, Ann. Inst. H. Poincaré 9 (1939), 1-11.
  • 42. Marston Morse, La dynamique symbolique, Bull. Soc. Math. France 67 (1939), 1-7.
  • 43. Marston Morse, Symbolic dynamics. II. Sturmian sequences, by M. Morse and G. A. Hedlund, Amer. J. Math. 61 (1940), 1-42.
  • 44. Marston Morse, Rank and span in functional topology, Ann. of Math. (2) 41 (1940), 419-454.
  • 45. Marston Morse, The first variation in minimal surface theory, Duke Math. J. 6 (1940), 263-289.
  • 46. Marston Morse, Twentieth century mathematics, Amer. Scholar 9 (1940), 499-504.
  • 47. Marston Morse, Unstable minimal surfaces of higher topological types, by M. Morse and C. B. Tompkins, Proc. Nat. Acad. Sci. 26 (1940), 713-716.
  • 48. Marston Morse, A mathematical theory of equilibrium with applications to minimal surface theory, Science 93 (1941), 69-71.
  • 49. Marston Morse, Minimal surfaces not of minimum type by a new mode of approximation, by M. Morse and C. B. Tompkins, Ann. of Math. (2) 42 (1941), 62-72.
  • 50. Marston Morse, Corrections to our paper on the existence of minimal surfaces of general critical types, by M. Morse and C. B. Tompkins, Ann. of Math. (2) 42 (1941), 331.
  • 51. Marston Morse, Mathematics in the defense program, by M. Morse and W. L. Hart, The Math. Teacher, May 1941, pp. 195-202.
  • 52. Marston Morse, Unstable minimal surfaces of higher topological structure, by M. Morse and C. B. Tompkins, Duke Math. J. 8 (1941), 350-375.
  • 53. Marston Morse, The continuity of the area of harmonic surfaces as a function of the boundary representations, by M. Morse and C. B. Tompkins, Amer. J. Math. 63 (1941), 825-838.
  • 54. Marston Morse, Report on the War Preparedness Committee of the AMS and MAA at the Chicago meeting, Bull. Amer. Math. Soc. 47 (1941), 829-831.
  • 55. Marston Morse, What is analysis in the large?, Amer. Math. Monthly 49 (1942), 358-364.
  • 56. Marston Morse, Manifolds without conjugate points, by M. Morse and G. A. Hedlund, Trans. Amer. Math. Soc. 51 (1942), 362-386.
  • 57. Marston Morse, Mathematics and the maximum scientific effort in total war, Scientific Monthly 56 (1943), 1-6.
  • 58. Marston Morse, Variational theory in the large including the non-regular case, by M. Morse and George Ewing–First paper, Ann. of Math. (2) 44 (1943), 339-353; Second paper, Ann. of Math. (2) 44 (1943), 354-374.
  • 59. Marston Morse, Functional topology, Bull. Amer. Math. Soc. 49 (1943), 144-149.
  • 60. Marston Morse, Unending chess, symbolic dynamics and a problem in semigroups, by M. Morse and G. A. Hedlund, Duke Math. J. 11 (1944), 1-7.
  • 61. Marston Morse, Topological methods in the theory of functions of a single complex variable: I. Deformation types of locally simple plane curves; II. Boundary values and integral characteristics of interior transformations and pseudoharmonic functions, by M. Morse and M. Heins, Ann. of Math. (2) 46 (1945), 600-624; 625-666; III. Causal isomorphisms in the theory of pseudoharmonic functions, Ann. of Math. (2) 47 (1946), 233-273.
  • 62. Marston Morse, The topology of pseudoharmonic functions, Duke Math. J. 13 (1946), 21-42.
  • 63. Marston Morse, George David Birkhoff and his mathematical work, Bull. Amer. Math. Soc. 52 (1946), 357-391.
  • 64. Marston Morse, Topological methods in the theory of functions of a complex variable, by M. Morse and M. Heins, Bull. Amer. Math. Soc. 53 (1947), 1-15.
  • 65. Marston Morse, Deformation classes of meromorphic functions and their extensions to interior transformations, by M. Morse and M. Heins, Acta Math. 79 (1947), 51-103.
  • 66. Marston Morse, Functions on a metric space and a setting for isoperimetric problems, Studies and Essays, presented to R. Courant on his 60th birthday, January 8, 1948, pp. 253-263. Interscience Publishers Inc., New York, 1948.
  • 67. Marston Morse, A positive, lower semicontinuous nondegenerate function on a metric space, Fund. Math. 35 (1948), 47-78.
  • 68. Marston Morse, L-S-homotopy classes of locally simple curves, Ann. Soc. Polonaise Math. 21 (1948), 236-256.
  • 69. Marston Morse, Equilibria in nature, stable and unstable, Proc. Amer. Philos. Soc. 93 (1949), 222-225.
  • 70. Marston Morse, The Fréchet variation and the convergence of multiple Fourier series, by M. Morse and W. Transue, Proc. Nat. Acad. Sci. 35 (1949), 395-399.
  • 71. Marston Morse, Integral representations of bilinear functionals, by M. Morse and W. Transue, Proc. Nat Acad. Sci. 35 (1949), 136-143.
  • 72. Marston Morse, Functionals of bounded Fréchet variation, by M. Morse and W. Transue, Canad. J. Math. 1 (1949), 153-165.
  • 73. Marston Morse, Functionals F bilinear over the product A x B of two p-normed vector spaces: I. The representation of F, by M. Morse and W. Transue, Ann. of Math. (2) 50 (1949), 777-815; II. Admissible spaces A, Ann. of Math. (2) 51 (1950), 576-614.
  • 74. Marston Morse, Les progrès de l'analyse variationnelle globale et son programme, Rendiconti di Matematica e delle sue applicazioni, Serie V, 70 (3) (4) (1948), 1-11.
  • 75. Marston Morse, Topological methods in the theory of functions of a complex variable, Ann. Matematica 28 (1949), 21-25.
  • 76. Marston Morse, A characterization of the bilinear sum associated with the classical second variation, by M. Morse and W. Transue, Ann. Matematica 29 (1949), 25-68.
  • 77. Marston Morse, L-S homotopy classes on the topological image of the projective plane, Bull. Amer. Math. Soc. 55 (1949), 981-1003.
  • 78. Marston Morse, The Fréchet variation and a generalization for multiple Fourier series of the Jordan test, by M. Morse and W. Transue, Rivista di Matematica della Università di Parma 1 (1950), 1-16.
  • 79. Marston Morse, The Fréchet variation sector limits, and left decompositions, by M. Morse with W. Transue, Canad. J. Math. (3) 2 (1950), 344-374.
  • 80. Marston Morse, A calculus of Fréchet variations, by M. Morse with W. Transue, J. Indian Math. Soc. 14 (2) (3) (1950), 65-117.
  • 81. Marston Morse, The Fréchet variation and Pringsheim convergence of double Fourier series, Contributions to Fourier Analysis, by M. Morse and W. Transue, Ann. Math. Studies, no. 25, Princeton Univ. Press, Princeton, N. J., 1950, pp. 46-103.
  • 82. Marston Morse, Norms of distribution functions associated with bilinear functionals, by M. Morse and W. Transue, ibidem, pp. 104-144.
  • 83. Marston Morse, Bilinear functionals over CXC, by M. Morse and W. Transue, Acta Sci. Math. 12 (1950), 41-48.
  • 84. Marston Morse, Recent advances in variational theory in the large, Proc. Internat. Cong. Math. 2 (1950), 143-156.
  • 85. Marston Morse, A new implication of the Young-Pollard convergence criteria for a Fourier series, by M. Morse and W. Transue, Duke Math. J. 18 (1951), 563-571.
  • 86. Marston Morse, Trends in analysis, J. Franklin Inst. 251 (1951), 33-43.
  • 87. Marston Morse, Mathematics and the arts, Yale Review 40 (1951), 604-612. 75th birthday of Robert Frost Essay given at Kenyon College.
  • 88. Marston Morse, Homology relations on regular orientable manifolds, Proc. Nat. Acad. Sci. 38 (1952), 247-258.
  • 89. Marston Morse, Contour equivalent pseudoharmonic functions and pseudoconjugates, by M. Morse with J. Jenkins, Amer. J. Math. 74 (1952), 23-51.
  • 90. Marston Morse, Homotopy and homology related to the Schoenflies problem, by M. Morse with E. Baiada, Ann. of Math. (2) 58 (1953), 142-165.
  • 91. Marston Morse, Topological methods on Riemann surfaces. Pseudoharmonic functions, by M. Morse with J. Jenkins, Ann. of Math. Studies, no. 30, Princeton Univ. Press, Princeton, N. J., 1953, pp. 111-139.
  • 92. Marston Morse, The existence of pseudoconjugates on Riemann surfaces, by M. Morse with J. Jenkins, Fund. Math. 39 (1953), 269-287.
  • 93. Marston Morse, The generalized Fréchet variation and Riesz-Young-Hausdorff type theorems, by M. Morse with W. Transue, Rend. Circ. Math. Palermo, Serie II, Tome II (1953), 35 pp.
  • 94. Marston Morse, Conjugate nets, conformal structure, and interior transformations on open Riemann surfaces, by M. Morse with J. Jenkins, Proc. Nat. Acad. Sci. 39 (1953), 1261-1268.
  • 95. Marston Morse, Conjugate nets on an open Riemann surface, by M. Morse with J. Jenkins, Proc. Univ. Michigan Conf., June 1953.
  • 96. Marston Morse, Curve families F* locally the level curves of a pseudoharmonic function, by M. Morse with J. Jenkins, Acta Math. 91 (1954), 42 pp.
  • 97. Marston Morse, (With W. Transue) Semi-normed vector spaces with duals of integral type, J. Analyse Math. 4 (1954-1955), 149-186.
  • 98. Marston Morse, Bimeasures and their integral extensions, Ann. Mat. Pura Appl. 39 (1955), 345-356.
  • 99. Marston Morse, (With W. Transue) C-bimeasures Λ and their superior integrals Λ*, Rend. Circ. Math. Palermo 4 (1955), 270-300.
  • 100. Marston Morse, (With W. Transue) The representation of a C-bimeasure on a general rectangle, Proc. Nat Acad. Sci. 42 (1956), 89-95.
  • 101. Marston Morse, La construction topologique d'un réseau isotherme sur une surface ouverte, J. Math. Pures Appl. 35 (1956), 67-75.
  • 102. Marston Morse, (With W. Transue) C-bimeasures Λ and their integral extensions, Ann. of Math. (2) 64 (1956), 480-504.
  • 103. Marston Morse, (With W. Transue) Products of a C-measure and a locally integrable mapping, Canad. J. Math. 9 (1957), 475-486.
  • 104. Marston Morse, Differentiable mappings in the Schoenflies problem, Proc. Nat. Acad. Sci. 44 (1958), 1068-1072.
  • 105. Marston Morse, (With W. Transue) Vector subspaces A of CE with duals of integral type, J. Math. 37 (1958), 44-363.
  • 106. Marston Morse, (With W. Transue) The existence of vector function spaces with duals of integral type, Colloq. Math. 6 (1958), 95-117.
  • 107. Marston Morse, (With W. Transue) The local characterization of vector function spaces with duals of integral type, J. Analyse Math. 6 (1958), 225-260.
  • 108. Marston Morse, Mathematics and the arts, Bull. of the Atomic Scientists 15 (1959), 55-59 (Yale Rev. 1951).
  • 109. Marston Morse, Mathematics, the arts and freedom, Thought (Fordham Univ. Quarterly) 34 (1959), 16-24.
  • 110. Marston Morse, Differentiable mappings in the Schoenflies theorem, Comp. Math. 14 (1959), 83-151.
  • 111. Marston Morse, Topologically nondegenerate functions on a compact n-manifold M, J. Analyse Math. 7 (1959), 189-208.
  • 112. Marston Morse, Fields of geodesics issuing from a point, Proc. Nat. Acad. Sci. 46 (1960), 105-111.
  • 113. Marston Morse, The existence of polar nondegenerate functions on differentiable manifolds, Ann of Math. (2) 71 (1960), 352-383.
  • 114. Marston Morse, A reduction of the Schoenflies extension problem, Bull. Amer. Math. Soc. 66 (1960), 113-115.
  • 115. Marston Morse, The existence of nondegenerate functions on a compact differentiable m-manifold M, Ann. Mat. Pura Appl. 49 (1960), 117-128.
  • 116. Marston Morse, Recurrent geodesics on a surface of negative curvature, Trans. Amer. Math. Soc. 22 (1921), 84-110. (Multilithed with Historical Note, 1960.)
  • 117. Marston Morse, (With W. Huebsch) An explicit solution of the Schoenflies extension problem, J. Math. Soc. Japan 12 (1960), 271-289.
  • 118. Marston Morse, (With W. Huebsch) A singularity in the Schoenflies extension, Proc. Nat. Acad. Sci. 46 (1960), 1100-1102.
  • 119. Marston Morse, On elevating manifold differentiability, J. Indian Math. Soc. 24 (1960), 379-400.
  • 120. Marston Morse, (With W. Huebsch) The dependence of the Schenflies extension on an accessory parameter, J. Analyse Math. 8 (1960-1961), 209-271.
  • 121. Marston Morse, (With W. Huebsch) Abstracts: A characterization of an analytic n-ball, and A. Schoenflies extension of a real analytic diffeomorphism of S into W. (Multilithed April 17, 1961.)
  • 122. Marston Morse, Boundary values of partial derivatives of Poisson integral, Ann. Acad. Brasil. Ci. 33 (1961), 131-139.
  • 123. Marston Morse, (With W. Huebsch) Conical singular points of diffeomorphisms, Bull. Amer. Math. Soc. 67 (1961), 490-493.
  • 124. Marston Morse, (With W. Huebsch) Schoenflies extensions of analytic families of diffeomorphisms, Math. Ann. 144 (1961), 162-174.
  • 125. Marston Morse, (With W. Huebsch) The Schoenflies extension in the analytic case, Ann. Mat. Pura Appl. 54 (1961), 359-378.
  • 126. Marston Morse, Schoenflies problems, Fund. Math. 50 (1962), 319-332.
  • 127. Marston Morse, (With W. Huebsch) Schoenflies extensions without interior differential singularities, Ann. of Math. (2) 76 (1962), 18-54.
  • 128. Marston Morse, Topological, differential, and analytic formulations of Schoenflies problems, Rend. Circ. Mat. Palermo 21 (1962), 286-295. (Lecture delivered in Rome, April 1962.)
  • 129. Marston Morse, (With W. Huebsch) Analytic diffeomorphisms approximating Cm-diffeomorphisms, Rend. Circ. Mat. Palermo 11 (1962), 1-22.
  • 130. Marston Morse, (With W. Huebsch) Diffeomorphisms of manifolds, Rend. Circ. Mat. Palermo 11 (1962), 1-28.
  • 131. Marston Morse, Schoenflies extensions and differentiable isotopies, J. Mat. Pures Appl. 42 (1963), 29-41.
  • 132. Marston Morse, An arbitrarily small analytic mapping into R+ of a proper, regular, analytic r-manifold in Em, Rendi. Sci. Ist Lombardo, Milano (A) 97 (1963), 650-660.
  • 133. Marston Morse, Harmonic extensions, Monatsh. Math. 67 (1963), 317-325.
  • 134. Marston Morse, (With W. Huebsch) The dependence of the Shoenflies extension on an accessory parameter (the topological case), Proc. Nat. Acad. Sci. 50 (1963), 1036-1037.
  • 135. Marston Morse, (With W. Huebsch) The bowl theorem and a model nondegenerate function, Proc. Nat. Acad. Sci. 51 (1964), 49-51.
  • 136. Marston Morse, (With W. Huebsch) Conditioned differentiable isotopies, Differential Analysis Colloq., Bombay, India, 1964, pp. 1-25.
  • 137. Marston Morse, The elimination of critical points of a nondegenerate function on a differentiable manifold, J. Analyse Math. 13 (1964), 257-316.
  • 138. Marston Morse, Bowls, f-fibre bundles and the alteration of critical values, Ann. Acad. Brasil. Ci. 36 (1964), 245-259.
  • 139. Marston Morse, Bowls of a nondegenerate function on a compact differentiable manifold, Differential and Combinatorial Topology, Princeton Univ. Press, Princeton, N. J., 1965, pp. 81-103. (Symposium in honor of M. Morse.)
  • 140. Marston Morse, Quadratic forms Θ and Θ-fibre bundles, Ann. of Math. (2) 81 (1965), 303-340.
  • 141. Marston Morse, (With W. Huebsch), A model nondegenerate function, Revue Roumaine Math. Pures Appl. 10 (1965), 691-722.
  • 142. Marston Morse, The reduction of a function near a nondegenerate critical point, Proc. Nat. Acad. Sci. 54 (1965), 1759-1764.
  • 143. Marston Morse, Projective methods (in photogrammetry), Photogrammetric Engineering, Sept. 1966, pp. 849-855.
  • 144. Marston Morse, (With J. Cantwell) Diffeomorphism including automorphisms of π1(Tp), Topology 4 (1966), 323-341.
  • 145. Marston Morse, Nondegenerate functions on abstract differentiable manifolds M, J. Analyse Math. 19 (1967), 231-272.
  • 146. Marston Morse, Nondegenerate real-valued differentiable functions, Proc. Nat Acad. Sci. 57 (1967), 32-38.
  • 147. Marston Morse, Focal sets of regular manifolds Mn-1 in En, J. Differential Geometry 1 (1967), 1-19.
  • 148. Marston Morse, Bowls, f-fiber bundles and the alteration of critical values, Proc. Nat. Acad. Sci. 60 (1968), 1156-1159.
  • 149. Marston Morse, (With S. S. Cairns) Singular homology over Z on topological manifolds, J. Differential Geometry 3 (1969), 257-288.
  • 150. Marston Morse, (With S. S. Cairns) A setting for a theorem of Bott, Proc. Nat Acad. Sci. 65 (1970), 8-9.
  • 151. Marston Morse, Mathematics in our culture, The Spirit and the Uses of the Mathematical Sciences by T. L. Saaty and F. J. Weyl, McGraw-Hill, New York, 1969, pp. 105-120.
  • 152. Marston Morse, Equilibrium points of harmonic potentials, J. Analyse Math. 23 (1970), 281-296.
  • 153. Marston Morse, (With S. S. Cairns) Elementary quotients of abelian groups, and singular homology on manifolds, Nagoya Math. J. 39 (1970), 167-198.
  • 154. Marston Morse, Subordinate quadratic forms and their complementary forms, Proc. Nat. Acad. Sci. 68 (1971), 579.
  • 155. Marston Morse, Model families of quadratic forms. Proc. Nat. Acad. Sci. 68 (1971), 914-915.
  • 156. Marston Morse, (With S. S. Cairns) Orientation of differentiable manifolds, J. Differential Geometry 6 (1971), 1-31. (Dedicated to S. S. Chern and D. C. Spencer.)
  • 157. Marston Morse, Subordinate quadratic forms and their complementary forms, Rev. Roumaine Math. Pures Appl. 16 (1971), 559-569.
  • 158. Marston Morse, (With S. S. Cairns) Singular homology on an untriangulated manifold, J. Differential Geometry 7 (1972), 1-17.
  • 159. Marston Morse, Axial presentations of regular arcs on Mn, Proc. Nat. Acad. Sci. 69 (1972), 3504-3505.
  • 160. Marston Morse, Singular quadratic functionals, Math. Ann. 201 (1973), 315-340.
  • 161. Marston Morse, F-deformations and F-tractions, Proc. Nat. Acad. Sci. 70 (1973), 1634-1635.
  • 162. Marston Morse, Fréchet curve classes, J. Math. Pures Appl. 53 (1974), 291-298.
  • 163. Marston Morse, Singleton critical values, Bull. Inst. Math. Acad. Sinica 2 (1974), 317-333.
  • 164. Marston Morse, (With D. Landis) Geodesic joins and Fréchet curve classes, Rend. Mat. 8 (1975), 161-185.
  • 165. Marston Morse, Connectivities Ri of Fréchet spaces in variational topology, Proc. Nat. Acad. Sci. 72 (1975), 2069-2070.
  • 166. Marston Morse, Topologically nondegenerate functions, Fund. Math. 88 (1975), 17-52.
  • 167. Marston Morse, (With D. Landis) Tractions in critical point theory, Rocky Mountain J. Math. 5 (1975), 379-399.
  • 168. Marston Morse, Fréchet numbers in global variational analysis, Houston J. Math. 2 (1976), 387-403.
  • 169. Marston Morse, (With S. S. Cairns) Fréchet numbers and geodesics on surfaces, Bull. Inst. Math. Acad. Sinica 4 (1976), 7-34.
  • 170. Marston Morse, Conjugate points on a limiting extremal, Proc. Nat. Acad. Sci. 73 (1976), 1800-1801.
  • 171. Marston Morse, Extremal limits of nondegenerate extremals, Rend. Mat. 9 (1976), 621-632.
  • 172. Marston Morse, Tubular presentations π of subsets of manifolds, Proc. Nat. Acad. Sci. 74 (1977), 2209-2210.
  • 173. Marston Morse, Nondegenerate point pairs in global variational analysis, J. Differential Geometry 11 (1976), 617-632.
  • 174. Marston Morse, Uses of the Fréchet numbers Ri(Mn) of a smooth manifold, Houston J. Math. 3 (1977), 503-513.
  • 175. Marston Morse, Lacunary type number sequence in global analyses, J. Math. Pures Appl. 57 (1978), 87-98.
  • 176. Marston Morse, The Fréchet numbers of the differentiable product of two compact converted smooth manifolds, Edited and completed by S. S. Cairns, Univ. of Illinois, for Marston Morse memorial issue of Bull, of Institute of Math. Acad. Sinica, Vol. VI, No. 2, October 1978.
  • 1. Marston Morse, Calculus of variations in the large, Amer. Math. Soc. Colloq. Publ., no. 18, Amer. Math. Soc., Providence, R. I., 1934. (Address: P. O. Box 6248, Providence, R. I., 02904.)
  • 2. Marston Morse, Functional topology and abstract variational theory, Mémorial des Sciences Mathématiques 92, Gauthier-Villars, Paris, 1939.
  • 3. Marston Morse, Topological methods in the theory of functions of a complex variable, Princeton Univ. Press, Princeton, N. J., 1947. (Paperback available from Kraus Reprint Co., 16 E. 46th St., New York, N. Y. 10017.)
  • 4. Marston Morse, Symbolic dynamics, Lectures of 1938 with New Preface, 1966, 87 pp. (Notes by R. Oldenburger.) University Microfilms, 300 N. Zeeb Road, Ann Arbor, Mich. 48106.
  • 5. Marston Morse, (With S. S. Cairns) Critical point theory in global analysis and differential topology, Academic Press, New York, 1969.
  • 6. Marston Morse, Variational analysis: Critical extremals and Sturmian extensions, Wiley, New York, 1973.
  • 7. Marston Morse, Global variational analysis: Weierstrass integrals on a Riemannian manifold, Mathematical Notes, Princeton Univ. Press, Princeton, N. J., 1976.
  • [A] A. Andreotti and T. Frankel, The Lefschetz theorem on hyperplane sections, Ann. of Math. (2) 69 (1959), 713-717.
  • [B1] G. D. Birkhoff, Dynamical systems with two degrees of freedom, Trans. Amer. Math. Soc. 18 (1917), 240.
  • [B2] G. D. Birkhoff, Quelques théorèmes sur le mouvement des systèmes dynamiques, Bull. Soc. Math. France 40 (1912), 305-323.
  • [B3] G. D. Birkhoff and M. R. Hestenes, Generalized minimax principle in the calculus of variations, Duke Math. J. 1 (1935).
  • [B4] R. Bott, Nondegenerate critical manifolds, Ann. of Math. (2) 60 (1954), 248-261.
  • [B5] R. Bott, The stable homotopy of the classical groups, Ann. of Math. (2) 70 (1959), 179-203.
  • [B6] R. Bott and H. Samelson, Applications of the theory of Morse to symmetric spaces, Amer. J. Math. 80 (1958), 964-1029.
  • [B7] Morton Brown, A proof of the generalized Schoenflies theorem, Bull. Amer. Math. Soc. 66 (1960), 74-76.
  • [D1] R. Deheuvels, Topologie d'une fonctionelle, Ann. of Math. (2) 61 (1955), 13-72.
  • [H1] J. Hadamard, Les surfaces à courbure opposées et leur lignes géodesiques, J. Math. Pures Appl. (5) 4 (1898).
  • [H2] G. Hedlund, On the metrical transitivity of geodesics on closed surfaces of constant negative curvature, Ann. of Math. (2) 35 (1934), 787-808.
  • [K] W. Klingenberg, Lectures on closed geodesics, Grundlehren der Mathematischen Wissenschaften, Springer-Verlag.
  • [M1] B. Mazur, On embeddings of spheres, Bull. Amer. Math. Soc. 65 (1959), 59-65.
  • [M2] J. Milnor, Morse theory, Ann. of Math. Studies no. 51, Princeton Univ. Press, Princeton, N. J., 1963.
  • [N1] P. Novikov, One periodic groups, Dokl. Akad. Nauk SSSR 127 (1959), 749-752; English transl., Amer. Math. Soc. Transl. (2) 45 (1965), 19-22.
  • [P1] R. Palais, Morse theory on Hilbert manifolds, Topology 2 (1963), 299-340.
  • [R] H. L. Royden, The analytic approximation of differentiable mappings, Math. Ann. 139 (1960), 171-179.
  • [S1] Seifert-Threlfall, Variationsrechnung im Grossen, Teubner, Leipzig, 1938.
  • [S2] S. Smale, Generalized Poincaré conjecture in higher dimensions, Bull. Amer. Math. Soc. 66 (1960), 373-375.
  • [S3] S. Smale, A survey of some recent developments in differential topology, Bull. Amer. Math. Soc. 69 (1963), 131-145.
  • [S4] S. Smale, Differentiable dynamical systems, Bull. Amer. Math. Soc. 73 (1967), 747-817.
  • [S5] G. Series, Symbolic dynamics for geodesic flows, Univ. Warwick, 1979.
  • [T1] R. Thom, Sur une partition en cellules associée á une fonction sur une variété, C. R. Acad. Sci. Paris 228 (1949), 973-975.