Bulletin of the American Mathematical Society

The solution of the problem of integration in finite terms

Robert H. Risch

Full-text: Open access

Article information

Source
Bull. Amer. Math. Soc., Volume 76, Number 3 (1970), 605-608.

Dates
First available in Project Euclid: 4 July 2007

Permanent link to this document
https://projecteuclid.org/euclid.bams/1183531821

Mathematical Reviews number (MathSciNet)
MR0269635

Zentralblatt MATH identifier
0196.06801

Subjects
Primary: 1280 3402
Secondary: 1451

Citation

Risch, Robert H. The solution of the problem of integration in finite terms. Bull. Amer. Math. Soc. 76 (1970), no. 3, 605--608. https://projecteuclid.org/euclid.bams/1183531821


Export citation

References

  • 1. G. A. Bliss, Algebraic functions, Dover, New York, 1966. MR 34 #2866.
  • 2. J. W. S. Cassels, Diophantine equations with special reference to elliptic curves, J. London Math. Soc. 41 (1966), 193-291. MR 33 #7299.
  • 3. W.-L. Chow and S. Lang, On the birational equivalence of curves under specialization, Amer. J. Math. 79 (1957), 649-652. MR 19, 767.
  • 4. M. Eichler, Introduction to the theory of algebraic numbers and functions, Birkhaüser, Basel, 1963; English transl., Pure and Appl. Math., vol. 23, Academic Press, New York, 1966. MR 29 #5821; MR 35 #160.
  • 5. E. Goursat, Sur les intégrales abeliennes qui s'experiment par logarithms, C.R. Acad. Sci. Paris 118 (1894), 515-517.
  • 6. G. H. Halphen, Traité des fonctiones elliptiques et de leurs applications. Deuxiéme Partie, Gauthier-Villars, Paris, 1888.
  • 7. G. H. Hardy, The integration of functions of a single variable, 2nd ed., Cambridge Univ. Press, New York, 1916.
  • 8. R. H. Risch, The problem of integration in finite terms, Trans. Amer. Math. Soc. 139 (1969), 167-189. MR 38 #5759.
  • 9. G. Shimura and Y. Taniyama, Complex multiplication of abelian varieties and its applications to number theory, Publ. Math. Soc. Japan, 6, The Mathematical Society of Japan, Tokyo, 1961. MR 23 #A2419.