The Annals of Applied Statistics

Robust regularized singular value decomposition with application to mortality data

Lingsong Zhang, Haipeng Shen, and Jianhua Z. Huang

Full-text: Open access


We develop a robust regularized singular value decomposition (RobRSVD) method for analyzing two-way functional data. The research is motivated by the application of modeling human mortality as a smooth two-way function of age group and year. The RobRSVD is formulated as a penalized loss minimization problem where a robust loss function is used to measure the reconstruction error of a low-rank matrix approximation of the data, and an appropriately defined two-way roughness penalty function is used to ensure smoothness along each of the two functional domains. By viewing the minimization problem as two conditional regularized robust regressions, we develop a fast iterative reweighted least squares algorithm to implement the method. Our implementation naturally incorporates missing values. Furthermore, our formulation allows rigorous derivation of leave-one-row/column-out cross-validation and generalized cross-validation criteria, which enable computationally efficient data-driven penalty parameter selection. The advantages of the new robust method over nonrobust ones are shown via extensive simulation studies and the mortality rate application.

Article information

Ann. Appl. Stat., Volume 7, Number 3 (2013), 1540-1561.

First available in Project Euclid: 3 October 2013

Permanent link to this document

Digital Object Identifier

Mathematical Reviews number (MathSciNet)

Zentralblatt MATH identifier

Cross-validation functional data analysis GCV principal component analysis robustness smoothing spline


Zhang, Lingsong; Shen, Haipeng; Huang, Jianhua Z. Robust regularized singular value decomposition with application to mortality data. Ann. Appl. Stat. 7 (2013), no. 3, 1540--1561. doi:10.1214/13-AOAS649.

Export citation


  • Ammann, L. P. (1993). Robust singular value decompositions: A new approach to projection pursuit. J. Amer. Statist. Assoc. 88 505–514.
  • Bai, P., Shen, H., Huang, X. and Truong, Y. (2008). A supervised singular value decomposition for independent component analysis of fMRI. Statist. Sinica 18 1233–1252.
  • Bali, J. L., Boente, G., Tyler, D. E. and Wang, J.-L. (2011). Robust functional principal components: A projection-pursuit approach. Ann. Statist. 39 2852–2882.
  • Beckers, J. and Rixen, M. (2003). EOF calculations and data filling from incomplete oceanographic datasets. J. Atmos. Oceanic Technol. 20 1839–1856.
  • Croux, C., Filzmoser, P., Pison, G. and Rousseeuw, P. J. (2003). Fitting multiplicative models by robust alternating regressions. Stat. Comput. 13 23–36.
  • Ferraty, F. and Vieu, P. (2006). Nonparametric Functional Data Analysis: Theory and Practice. Springer, New York.
  • Gabriel, K. R. and Zamir, S. (1979). Lower rank approximation of matrices by least squares with any choice of weights. Technometrics 21 489–498.
  • Gervini, D. (2008). Robust functional estimation using the median and spherical principal components. Biometrika 95 587–600.
  • Gervini, D. (2009). Detecting and handling outlying trajectories in irregularly sampled functional datasets. Ann. Appl. Stat. 3 1758–1775.
  • Gervini, D. (2010). The functional singular value decomposition for bivariate stochastic processes. Comput. Statist. Data Anal. 54 163–172.
  • Golub, G. H. and Van Loan, C. F. (1996). Matrix Computations, 3rd ed. Johns Hopkins Univ. Press, Baltimore, MD.
  • Green, P. J. and Silverman, B. W. (1994). Nonparametric Regression and Generalized Linear Models: A Roughness Penalty Approach. Monographs on Statistics and Applied Probability 58. Chapman & Hall, London.
  • Heiberger, R. M. and Becker, R. A. (1992). Design of an S function for robust regression using iteratively reweighted least squares. J. Comput. Graph. Statist. 1 181–196.
  • HMD (2011). Human mortality database. Available at
  • Huang, J. Z., Shen, H. and Buja, A. (2008). Functional principal components analysis via penalized rank one approximation. Electron. J. Stat. 2 678–695.
  • Huang, J. Z., Shen, H. and Buja, A. (2009). The analysis of two-way functional data using two-way regularized singular value decompositions. J. Amer. Statist. Assoc. 104 1609–1620.
  • Huber, P. J. and Ronchetti, E. M. (2009). Robust Statistics, 2nd ed. Wiley, Hoboken, NJ.
  • Hunter, D. R. and Lange, K. (2004). A tutorial on MM algorithms. Amer. Statist. 58 30–37.
  • Hyndman, R. J. and Shahid Ullah, M. (2007). Robust forecasting of mortality and fertility rates: A functional data approach. Comput. Statist. Data Anal. 51 4942–4956.
  • Hyndman, R. J. and Shang, H. L. (2009). Forecasting functional time series. J. Korean Statist. Soc. 38 199–211.
  • Kimeldorf, G. and Wahba, G. (1971). Some results on Tchebycheffian spline functions. J. Math. Anal. Appl. 33 82–95.
  • Lee, S., Huang, J. Z. and Hu, J. (2010). Sparse logistic principal components analysis for binary data. Ann. Appl. Stat. 4 1579–1601.
  • Liu, L., Hawkins, D. M., Ghosh, S. and Young, S. S. (2003). Robust singular value decomposition analysis of microarray data. Proc. Natl. Acad. Sci. USA 100 13167–13172 (electronic).
  • Locantore, N., Marron, J. S., Simpson, D. G., Tripoli, N., Zhang, J. T. and Cohen, K. L. (1999). Robust principal component analysis for functional data. TEST 8 1–73.
  • Maronna, R. A., Martin, R. D. and Yohai, V. J. (2006). Robust Statistics: Theory and Methods. Wiley, Chichester.
  • Martinez, J. G., Huang, J. Z., Burghardt, R. C., Barhoumi, R. and Carroll, R. J. (2009). Use of multiple singular value decompositions to analyze complex intracellular calcium ion signals. Ann. Appl. Stat. 3 1467–1492.
  • Ramsay, J. O. and Silverman, B. W. (2002). Applied Functional Data Analysis: Methods and Case Studies. Springer, New York.
  • Ramsay, J. O. and Silverman, B. W. (2005). Functional Data Analysis, 2nd ed. Springer, New York.
  • Rousseeuw, P. J. (1984). Least median of squares regression. J. Amer. Statist. Assoc. 79 871–880.
  • Shen, H., Zhu, Z. and Lee, T. (2007). Robust estimation of the self-similarity parameter in network traffic using wavelet transform. Signal Processing 87 2111–2124.
  • Silverman, B. W. (1996). Smoothed functional principal components analysis by choice of norm. Ann. Statist. 24 1–24.
  • Tian, T. S. and Li, Z. (2011). A spatio-temporal solution for the EEG/MEG inverse problem using group penalization methods. Stat. Interface 4 521–533.
  • Wahba, G. (1990). Spline Models for Observational Data. CBMS-NSF Regional Conference Series in Applied Mathematics 59. SIAM, Philadelphia, PA.
  • Yao, F., Müller, H.-G. and Wang, J.-L. (2005). Functional data analysis for sparse longitudinal data. J. Amer. Statist. Assoc. 100 577–590.
  • Zhang, L., Shen, H. and Huang, J. (2013). Supplement to “Robust regularized singular value decomposition with application to mortality data.” DOI:10.1214/13-AOAS649SUPP.
  • Zhang, L., Marron, J. S., Shen, H. and Zhu, Z. (2007). Singular value decomposition and its visualization. J. Comput. Graph. Statist. 16 833–854.

Supplemental materials

  • Supplementary material: Supplemental notes for “Robust regularized singular value decomposition with application to mortality data”. The supplemental notes include deviation of the GCV formula in this paper, an MM algorithm to handle missing value, two additional simulation examples in details, and one additional plot for the analysis of the mortality data.