The Annals of Applied Probability

Hybrid Atlas models

Tomoyuki Ichiba, Vassilios Papathanakos, Adrian Banner, Ioannis Karatzas, and Robert Fernholz

Full-text: Open access


We study Atlas-type models of equity markets with local characteristics that depend on both name and rank, and in ways that induce a stable capital distribution. Ergodic properties and rankings of processes are examined with reference to the theory of reflected Brownian motions in polyhedral domains. In the context of such models we discuss properties of various investment strategies, including the so-called growth-optimal and universal portfolios.

Article information

Ann. Appl. Probab. Volume 21, Number 2 (2011), 609-644.

First available in Project Euclid: 22 March 2011

Permanent link to this document

Digital Object Identifier

Mathematical Reviews number (MathSciNet)

Zentralblatt MATH identifier

Primary: 60G44: Martingales with continuous parameter 91B28
Secondary: 70F10: $n$-body problems

Diffusion processes interacting through their ranks reflected Brownian motions in polyhedral domains invariant measure of diffusion growth-optimal and universal portfolios local times of Bessel processes


Ichiba, Tomoyuki; Papathanakos, Vassilios; Banner, Adrian; Karatzas, Ioannis; Fernholz, Robert. Hybrid Atlas models. Ann. Appl. Probab. 21 (2011), no. 2, 609--644. doi:10.1214/10-AAP706.

Export citation


  • [1] Arguin, L.-P. and Aizenman, M. (2009). On the structure of quasi-stationary competing particle systems. Ann. Probab. 37 1080–1113.
  • [2] Azéma, J., Kaplan-Duflo, M. and Revuz, D. (1967). Mesure invariante sur les classes récurrentes des processus de Markov. Z. Wahrsch. Verw. Gebiete 8 157–181.
  • [3] Banner, A. D., Fernholz, R. and Karatzas, I. (2005). Atlas models of equity markets. Ann. Appl. Probab. 15 2296–2330.
  • [4] Banner, A. D. and Ghomrasni, R. (2008). Local times of ranked continuous semimartingales. Stochastic Process. Appl. 118 1244–1253.
  • [5] Bass, R. F. and Pardoux, É. (1987). Uniqueness for diffusions with piecewise constant coefficients. Probab. Theory Related Fields 76 557–572.
  • [6] Biane, P. and Yor, M. (1987). Valeurs principales associées aux temps locaux browniens. Bull. Sci. Math. (2) 111 23–101.
  • [7] Chatterjee, S. and Pal, S. (2010). A phase transition behavior for Brownian motions interacting through their ranks. Probab. Theory Related Fields 147 123–159.
  • [8] Chatterjee, S. and Pal, S. (2009). A combinatorial analysis of interacting diffusions. Available at arXiv:0902.4762.
  • [9] Cover, T. M. (1991). Universal portfolios. Math. Finance 1 1–29.
  • [10] Daĭ, D. G. and Williams, R. D. (1995). Existence and uniqueness of semimartingale reflecting Brownian motions in convex polyhedra. Teor. Veroyatnost. i Primenen. 40 3–53.
  • [11] Dieker, A. B. and Moriarty, J. (2009). Reflected Brownian motion in a wedge: Sum-of-exponential stationary densities. Electron. Commun. Probab. 14 1–16.
  • [12] Dubédat, J. (2004). Reflected planar Brownian motions, intertwining relations and crossing probabilities. Ann. Inst. H. Poincaré Probab. Statist. 40 539–552.
  • [13] Fernholz, E. R. (2002). Stochastic Portfolio Theory. Applications of Mathematics (New York) 48. Springer, New York.
  • [14] Fernholz, E. R. and Karatzas, I. (2009). Stochastic portfolio theory: A survey. In Handbook of Numerical Analysis: Mathematical Modeling and Numerical Methods in Finance 89–168. Elsevier, Amsterdam.
  • [15] Harrison, J. M. and Reiman, M. I. (1981). Reflected Brownian motion on an orthant. Ann. Probab. 9 302–308.
  • [16] Harrison, J. M. and Williams, R. J. (1987). Brownian models of open queueing networks with homogeneous customer populations. Stochastics 22 77–115.
  • [17] Harrison, J. M. and Williams, R. J. (1987). Multidimensional reflected Brownian motions having exponential stationary distributions. Ann. Probab. 15 115–137.
  • [18] Ichiba, T. and Karatzas, I. (2010). On collisions of Brownian particles. Ann. Appl. Probab. 20 951–977.
  • [19] Jamshidian, F. (1992). Asymptotically optimal portfolios. Math. Finance 2 131–150.
  • [20] Khas’minskiĭ, R. Z. (1980). Stochastic Stability of Differential Equations. Monographs and Textbooks on Mechanics of Solids and Fluids: Mechanics and Analysis 7. Sijthoff and Noordhoff, Alphen aan den Rijn, Germantown, MD.
  • [21] Krylov, N. (1971). An inequality in the theory of stochastic integrals. Theor. Probab. Appl. 16 438–448.
  • [22] Pal, S. and Pitman, J. (2008). One-dimensional Brownian particle systems with rank-dependent drifts. Ann. Appl. Probab. 18 2179–2207.
  • [23] Revuz, D. and Yor, M. (1999). Continuous Martingales and Brownian Motion, 3rd ed. Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences] 293. Springer, Berlin.
  • [24] Rogers, L. C. G. and Williams, D. (2000). Diffusions, Markov Processes, and Martingales. Vol. 2. Itô Calculus. Cambridge Univ. Press, Cambridge.
  • [25] Stroock, D. W. and Varadhan, S. R. S. (1971). Diffusion processes with boundary conditions. Comm. Pure Appl. Math. 24 147–225.
  • [26] Stroock, D. W. and Varadhan, S. R. S. (2006). Multidimensional Diffusion Processes. Springer, Berlin.
  • [27] Warren, J. (2007). Dyson’s Brownian motions, intertwining and interlacing. Electron. J. Probab. 12 573–590 (electronic).
  • [28] Williams, R. J. (1987). Reflected Brownian motion with skew symmetric data in a polyhedral domain. Probab. Theory Related Fields 75 459–485.