Annales de l'Institut Henri Poincaré, Probabilités et Statistiques

On the equivalence of some eternal additive coalescents

Anne-Laure Basdevant

Full-text: Open access

Abstract

In this paper, we study additive coalescents. Using their representation as fragmentation processes, we prove that the law of a large class of eternal additive coalescents is absolutely continuous with respect to the law of the standard additive coalescent on any bounded time interval.

Résumé

Nous étudions dans ce papier les coalescents additifs. En utilisant leur représentation en tant que processus de fragmentation, nous prouvons que certains coalescents additifs éternels ont une loi absolument continue par rapport à la loi du coalescent additif standard sur n’importe quel intervalle de temps borné inférieurement.

Article information

Source
Ann. Inst. H. Poincaré Probab. Statist. Volume 44, Number 6 (2008), 1020-1037.

Dates
First available in Project Euclid: 21 November 2008

Permanent link to this document
https://projecteuclid.org/euclid.aihp/1227287563

Digital Object Identifier
doi:10.1214/07-AIHP154

Mathematical Reviews number (MathSciNet)
MR2469333

Zentralblatt MATH identifier
1203.60108

Subjects
Primary: 60J25: Continuous-time Markov processes on general state spaces 60G09: Exchangeability

Keywords
Additive coalescent Fragmentation process

Citation

Basdevant, Anne-Laure. On the equivalence of some eternal additive coalescents. Ann. Inst. H. Poincaré Probab. Statist. 44 (2008), no. 6, 1020--1037. doi:10.1214/07-AIHP154. https://projecteuclid.org/euclid.aihp/1227287563.


Export citation

References

  • [1] D. Aldous and J. Pitman. The standard additive coalescent. Ann. Probab. 26 (1998) 1703–1726.
  • [2] D. Aldous and J. Pitman. Inhomogeneous continuum random trees and the entrance boundary of the additive coalescent. Probab. Theory Related Fields 118 (2000) 455–482.
  • [3] J. Berestycki. Ranked fragmentations. ESAIM Probab. Statist. 6 (2002) 157–175 (electronic). Available at http://www.edpsciences.org/10.1051/ps:2002009.
  • [4] J. Bertoin. Lévy Processes. Cambridge Univ. Press, 1996.
  • [5] J. Bertoin. Eternal additive coalescents and certain bridges with exchangeable increments. Ann. Probab. 29 (2001) 344–360.
  • [6] J. Bertoin. Self-similar fragmentations. Ann. Inst. H. Poincaré Probab. Statist. 38 (2002) 319–340.
  • [7] J. Bertoin. On small masses in self-similar fragmentations. Stochastic Process. Appl. 109 (2004) 13–22.
  • [8] J. Bertoin. Random Fragmentation and Coagulation Processes. Cambridge Stud. Adv. Math. 102. Cambridge University Press (2006).
  • [9] J. Bertoin and A. Rouault. Note sur les fragmentations. Private communication.
  • [10] J. D. Biggins. Martingale convergence in the branching random walk. J. Appl. Probab. 14 (1977) 25–37.
  • [11] B. Chauvin and A. Rouault. KPP equation and supercritical branching Brownian motion in the subcritical speed area. Application to spatial trees. Probab. Theory Related Fields 80 (1988) 299–314.
  • [12] S. N. Evans and J. Pitman. Construction of Markovian coalescents. Ann. Inst. H. Poincaré Probab. Statist. 34 (1998) 339–383.
  • [13] J. Jacod and A. N. Shiryaev. Limit Theorems for Stochastic Processes. Springer, Berlin, 1987.
  • [14] A. E. Kyprianou. Travelling wave solutions to the K–P–P equation: alternatives to Simon Harris’ probabilistic analysis. Ann. Inst. H. Poincaré Probab. Statist. 40 (2004) 53–72.
  • [15] G. Miermont. Ordered additive coalescent and fragmentations associated to Levy processes with no positive jumps. Electron. J. Probab. 6 (2001) no. 14, 33 pp. (electronic). Available at http://www.math.washington.edu/~ejpecp/EjpVol6/paper14.abs.html.
  • [16] J. Neveu. Multiplicative martingales for spatial branching processes. In Seminar on Stochastic Processes, 1987 (Princeton, NJ, 1987) 223–242. Progr. Probab. Statist. 15. Birkhäuser, Boston, MA, 1988.
  • [17] M. Perman, J. Pitman and M. Yor. Size-biased sampling of Poisson point processes and excursions. Probab. Theory Related Fields 92 (1992) 21–39.
  • [18] K.-I. Sato. Lévy Processes and Infinitely Divisible Distributions. Cambridge Univ. Press, 1999.