Rocky Mountain Journal of Mathematics

Selection theorems and minimal mappings in a cluster setting

Milan Matejdes

Full-text: Open access

Article information

Source
Rocky Mountain J. Math., Volume 41, Number 3 (2011), 851-867.

Dates
First available in Project Euclid: 22 July 2011

Permanent link to this document
https://projecteuclid.org/euclid.rmjm/1311340911

Digital Object Identifier
doi:10.1216/RMJ-2011-41-3-851

Mathematical Reviews number (MathSciNet)
MR2824883

Zentralblatt MATH identifier
1234.54027

Subjects
Primary: 54C60: Set-valued maps [See also 26E25, 28B20, 47H04, 58C06] 54C65: Selections [See also 28B20] 26E25: Set-valued functions [See also 28B20, 49J53, 54C60] {For nonsmooth analysis, see 49J52, 58Cxx, 90Cxx}

Keywords
Minimal multifunction selection quasi continuity cluster set closed graph

Citation

Matejdes, Milan. Selection theorems and minimal mappings in a cluster setting. Rocky Mountain J. Math. 41 (2011), no. 3, 851--867. doi:10.1216/RMJ-2011-41-3-851. https://projecteuclid.org/euclid.rmjm/1311340911


Export citation

References

  • J. Cao and W.B. Moors, Quasicontinuous selections of upper continuous set-valued mappings, Real Anal. Exchange 31 (2005-2006), 63–71.
  • J.P.R. Christensen, Theorems of Namioka and R.E. Jonson type for upper semicontinuous and compact valued set-valued mappings, Proc. Amer. Math. Soc. 86 (1982), 649-655.
  • F. Deutch and P. Kenderov, Continuous selections and approximate selections for set-valued mappings and applications to metric projections, SIAM J. Math. Anal 14 (1983), 181-194.
  • L. Drewnowski and I. Labuda, On minimal upper semicontinuous compact valued maps, Rocky Mountain J. Math. 20 (1990), 737-752.
  • D.K. Ganguly and Chandrani Mitra., Some remarks on $B^*$-continuous functions, Anal. St. Univ. Ali. Cuza, Isai 46 (2000), 331-336.
  • L. Holá, V. Baláž and T. Neubrunn, Remarks on $c$-continuous multifunctions, Acta Math. Univ. Comeniana 50-51 (1987), 51–59.
  • L. Holá and D. Holý, Minimal usco maps, densely continuous forms and upper semicontinuous functions, Rocky Mountain J. Math. 39 (2009), 545-562.
  • D. Holý and L. Matejíčka, $C$-upper semicontinuous and $C^*$-upper semicontinuous multifunctions, Tatra Mount. Math. Publ. 34 (2006), 159-165.
  • A. Jankech, The structure and some properties of cluster multifunction, Tatra Mount. Math. Publ. 34 (2006), 77-82.
  • I. Kupka, Existence of quasicontinuous selections for the space $2^\r$, Math. Bohemica 121 (1996), 157-163.
  • –––, Continuous multifunction from $[ -1,0]$ to $\r$ having no continuous selection, Publ. Math. Debrecen 48 (1996), 367-370.
  • M. Matejdes, Sur les seléctors des multifunctions, Math. Slovaca 37 (1987), 111-124.
  • –––, Quelques Remarques sur la quasi-continuit$\acutee$ des multifunctions, Math. Slovaca 37 (1987), 267-271.
  • –––, Continuity of multifunctions, Real Anal. Exchange 19 (1993-94), 394–413.
  • –––, Minimality of multifunctions, Real Anal. Exchange 32 (2007), 519-526.
  • E. Michael, Continuous selection I, Annals Math. 63 (1956), 361-382.
  • W.B. Moors, Closed graph theorems and Baire spaces, New Zealand J. Math. 31 (2002), 55-62.
  • W.B. Moors and Sivajah Somasundaram, Usco selections of densely defined set-valued mappings, Bull. Austral. Math. Soc. 65 (2002), 307-313.
  • T. Neubrunn, $C$-continuity and closed graphs, Čas. pro pěst. mat. 110 (1985), 172-178.
  • –––, Quasi continuity, Real Anal. Exchange 14 (1988-89), 259–306.