Nagoya Mathematical Journal

On the comparison theorem for elementary irregular ${\scr D}$-modules

Claude Sabbah

Full-text: Open access

Article information

Source
Nagoya Math. J., Volume 141 (1996), 107-124.

Dates
First available in Project Euclid: 14 June 2005

Permanent link to this document
https://projecteuclid.org/euclid.nmj/1118774381

Mathematical Reviews number (MathSciNet)
MR1383794

Zentralblatt MATH identifier
0858.32013

Subjects
Primary: 32C38: Sheaves of differential operators and their modules, D-modules [See also 14F10, 16S32, 35A27, 58J15]
Secondary: 14F40: de Rham cohomology [See also 14C30, 32C35, 32L10]

Citation

Sabbah, Claude. On the comparison theorem for elementary irregular ${\scr D}$-modules. Nagoya Math. J. 141 (1996), 107--124. https://projecteuclid.org/euclid.nmj/1118774381


Export citation

References

  • [1] K. Aomoto, M. Kita, P. Orlik, H. Terao, Twisted de Rham cohomology groups of logarithmic forms, preprint (1994) to appear in Adv. in Math.
  • [2] A. Borel et al., Algebraic -modules, Perspectives in Math. vol. 2, Academic Press, Boston, 1987.
  • [3] A. Borel et al., 207-352.
  • [4] J. Brianon, Ph. Maisonobe, Sur la variete caractersistique de systemes differentiels irreguliers le long d'une hypersurface, C. R. Acad. Sci. Paris 320 (1995), 285-288.
  • [5] S. A. Broughton, Milnor numbers and the topology of polynomial hypersurfaces, In- vent. Math., 97 (1988), 217-241.
  • [6] J. L. Brylinski, (Co)homologie d'intersection et faisceaux pervers, in Seminaire Bourbaki, Asterisque, 92–93 (1982), 129-157.
  • [7] J. L. Brylinski, Transformations canoniques, dualite projective, in Geometrie et analyse microlocales, Asterisque, 140–141 (1986), 3-134.
  • [8] A. Dimca, M. Saito, On the cohomology of the general fiber of a polynomial map, Compositio Math., 85 (1993), 299-309.
  • [9] M. Kashiwara, On the maximally overdetermined systems of differential equations, Publ. R.I.M.S.Kyoto Univ., 10 (1975), 563-579.
  • [10] M. Kashiwara, P. Schapira, Sheaves on Manifolds, Grundlehren der mathematischen Wissenschaften 292, Springer-Verlag, Berlin, Heidelberg, 1990.
  • [11] T. Kohno, Homology of a local system on the complement of hyperplanes, Proc. Japan Acad., 62 (1986), 144-147.
  • [12] Le D. T., Le concept de singularity isolee de fonction analytique, Advanced Studies in Pure Math., 8 (1986), 215-227.
  • [13] F. Loeser, C. Sabbah, Equations aux differences finies et determinants d'integrales de functions multiformes, Comment. Math. Helv., 66 (1991), 458-503.
  • [14] B. Malgrange, Equations differentielles a coefficients polynomiaux, Progress in Math. vol. 96, Birkhaser, Boston, 1991.
  • [15] B. Malgrange, letter to P. Deligne, April 30, 1991.
  • [16] Z. Mebkhout, Le formalsme des six operations de Grothendieck pour les -modules coherents, Hermann, Paris, 1989.
  • [17] Z. Mebkhout, Le theoreme de comparaison entre cohomologies de de Rham d'une variete algebrique complexe et le theoreme d'existence de Riemann, Publ. Math. I.H.E.S., 69(1989), 47-89.
  • [18] Z. Mebkhout, Le theoreme de positivite de irregularite pour les E-modules, in The Grothendieck Festschrift vol. Ill, Progress in Math., Birkhaser, Boston, 88 (1990), 83-132.
  • [19].
  • [20] Z. Mebkhout, L. Narvaez-Macarro, Le theoreme de constructiblilite de Kashiwara, in Elements de la theorie des systemes differentiels vol. 2, Hermann, Paris (1993), 47-98.
  • [21].
  • [22] M. Saito, letter to A. Dimca, April 30, 1991.
  • [23] M. Kashiwara, P. Schapira, Microlocal study of sheaves, Asterisque, 128 (1985). URA 169 du C.N.R.S. Centre de Mathematiques Ecole Polytechnique F-91128 Palaiseau cedex France e-mail sabbahmath.polytechnique.fr