The Annals of Probability

On the structure of quasi-stationary competing particle systems

Louis-Pierre Arguin and Michael Aizenman

Full-text: Open access

Abstract

We study point processes on the real line whose configurations X are locally finite, have a maximum and evolve through increments which are functions of correlated Gaussian variables. The correlations are intrinsic to the points and quantified by a matrix Q={qij}i, j∈ℕ. A probability measure on the pair (X, Q) is said to be quasi-stationary if the joint law of the gaps of X and of Q is invariant under the evolution. A known class of universally quasi-stationary processes is given by the Ruelle Probability Cascades (RPC), which are based on hierarchically nested Poisson–Dirichlet processes. It was conjectured that up to some natural superpositions these processes exhausted the class of laws which are robustly quasi-stationary. The main result of this work is a proof of this conjecture for the case where qij assume only a finite number of values. The result is of relevance for mean-field spin glass models, where the evolution corresponds to the cavity dynamics, and where the hierarchical organization of the Gibbs measure was first proposed as an ansatz.

Article information

Source
Ann. Probab., Volume 37, Number 3 (2009), 1080-1113.

Dates
First available in Project Euclid: 19 June 2009

Permanent link to this document
https://projecteuclid.org/euclid.aop/1245434029

Digital Object Identifier
doi:10.1214/08-AOP429

Mathematical Reviews number (MathSciNet)
MR2537550

Zentralblatt MATH identifier
1177.60050

Subjects
Primary: 60G55: Point processes
Secondary: 60G10: Stationary processes

Keywords
Point processes quasi-stationarity ultrametricity Ruelle probability cascades spin glasses

Citation

Arguin, Louis-Pierre; Aizenman, Michael. On the structure of quasi-stationary competing particle systems. Ann. Probab. 37 (2009), no. 3, 1080--1113. doi:10.1214/08-AOP429. https://projecteuclid.org/euclid.aop/1245434029


Export citation

References

  • [1] Aizenman, M., Sims, R. and Starr, S. L. (2003). An extended variational principle for the SK spin-glass model. Phys. Rev. B 68 214403.
  • [2] Aizenman, M., Sims, R. and Starr, S. L. (2007). Mean-field spin glass models from the cavity-ROSt perspective. In Prospects in Mathematical Physics. Contemporary Mathematicians 437 1–30. Amer. Math. Soc., Providence, RI.
  • [3] Aldous, D. J. (1985). Exchangeability and related topics. In École d’été de Probabilités de Saint–Flour, XIII—1983. Lecture Notes in Math. 1117 1–198. Springer, Berlin.
  • [4] Arguin, L.-P. (2007). Spin glass computations and Ruelle’s probability cascades. J. Stat. Phys. 126 951–976.
  • [5] Arguin, L.-P. (2007). A dynamical characterization of Poisson–Dirichlet distributions. Electron. Comm. Probab. 12 283–290 (electronic).
  • [6] Arguin, L.-P. (2008). Competing particle systems and the Ghirlanda–Guerra identities. Electron. J. Probab. 13 2101–2117.
  • [7] Bertoin, J. (2006). Random Fragmentation and Coagulation Processes. Cambridge Studies in Advanced Mathematics 102 288. Cambridge Univ. Press, Cambridge.
  • [8] Bolthausen, E. and Sznitman, A.-S. (1998). On Ruelle’s probability cascades and an abstract cavity method. Comm. Math. Phys. 197 247–276.
  • [9] Derrida, B. (1985). A generalization of the random energy model which includes correlations between energies. J. Phys. Lett. 46 L401–L407.
  • [10] Dovbysh, L. N. and Sudakov, V. N. (1982). Gram–de Finetti matrices. J. Soviet. Math. 24 3047–3054.
  • [11] Guerra, F. (2003). About the cavity fields in mean field spin glass models. Preprint. Available at arxiv:cond-mat/0307673.
  • [12] Guerra, F. (2003). Broken replica symmetry bounds in the mean field spin glass model. Comm. Math. Phys. 233 1–12.
  • [13] Hestir, K. (1989). A representation theorem applied to weakly exchangeable nonnegative definite arrays. J. Math. Anal. Appl. 142 390–402.
  • [14] Horn, R. A. and Johnson, C. R. (1985). Matrix Analysis. Cambridge Univ. Press, Cambridge.
  • [15] Mézard, M., Parisi, G. and Virasoro, M. A. (1987). Spin Glass Theory and Beyond. World Scientific Lecture Notes in Physics 9. World Scientific, Teaneck, NJ.
  • [16] Ruelle, D. (1987). A mathematical reformulation of Derrida’s REM and GREM. Comm. Math. Phys. 108 225–239.
  • [17] Ruzmaikina, A. and Aizenman, M. (2005). Characterization of invariant measures at the leading edge for competing particle systems. Ann. Probab. 33 82–113.
  • [18] Simon, B. (1993). The Statistical Mechanics of Lattice Gases, Vol. I. Princeton Univ. Press, Princeton, NJ.
  • [19] Talagrand, M. (2006). The Parisi formula. Ann. Math. (2) 163 221–263.