The Annals of Applied Statistics

Evaluating stationarity via change-point alternatives with applications to fMRI data

John A. D. Aston and Claudia Kirch

Full-text: Open access

Abstract

Functional magnetic resonance imaging (fMRI) is now a well-established technique for studying the brain. However, in many situations, such as when data are acquired in a resting state, it is difficult to know whether the data are truly stationary or if level shifts have occurred. To this end, change-point detection in sequences of functional data is examined where the functional observations are dependent and where the distributions of change-points from multiple subjects are required. Of particular interest is the case where the change-point is an epidemic change—a change occurs and then the observations return to baseline at a later time. The case where the covariance can be decomposed as a tensor product is considered with particular attention to the power analysis for detection. This is of interest in the application to fMRI, where the estimation of a full covariance structure for the three-dimensional image is not computationally feasible. Using the developed methods, a large study of resting state fMRI data is conducted to determine whether the subjects undertaking the resting scan have nonstationarities present in their time courses. It is found that a sizeable proportion of the subjects studied are not stationary. The change-point distribution for those subjects is empirically determined, as well as its theoretical properties examined.

Article information

Source
Ann. Appl. Stat., Volume 6, Number 4 (2012), 1906-1948.

Dates
First available in Project Euclid: 27 December 2012

Permanent link to this document
https://projecteuclid.org/euclid.aoas/1356629065

Digital Object Identifier
doi:10.1214/12-AOAS565

Mathematical Reviews number (MathSciNet)
MR3058688

Zentralblatt MATH identifier
1257.62072

Keywords
Epidemic change functional time series high-dimensional data resting state fMRI separable covariance structure stationarity

Citation

Aston, John A. D.; Kirch, Claudia. Evaluating stationarity via change-point alternatives with applications to fMRI data. Ann. Appl. Stat. 6 (2012), no. 4, 1906--1948. doi:10.1214/12-AOAS565. https://projecteuclid.org/euclid.aoas/1356629065


Export citation

References

  • Aston, J. A. D. and Gunn, R. N. (2005). Statistical estimation with Kronecker products in positron emission tomography. Linear Algebra Appl. 398 25–36.
  • Aston, J. A. D. and Kirch, C. (2012a). Supplement to “Evaluating stationarity via change-point alternatives with applications to fMRI data.” DOI:10.1214/12-AOAS565SUPP.
  • Aston, J. A. D. and Kirch, C. (2012b). Detecting and estimating changes in dependent functional data. J. Multivariate Anal. 109 204–220.
  • Aston, J. A. D., Gunn, R. N., Hinz, R. and Turkheimer, F. E. (2005). Wavelet variance components in image space for spatiotemporal neuroimaging data. Neuroimage 25 159–168.
  • Aue, A., Gabrys, R., Horváth, L. and Kokoszka, P. (2009). Estimation of a change-point in the mean function of functional data. J. Multivariate Anal. 100 2254–2269.
  • Beckmann, C. F. and Smith, S. M. (2005). Tensorial extensions of independent component analysis for multisubject FMRI analysis. Neuroimage 25 294–311.
  • Beckmann, C. F., DeLuca, M., Devlin, J. T. and Smith, S. M. (2005). Investigations into resting-state connectivity using independent component analysis. Philosophical Transactions of the Royal Society B: Biological Sciences 360 1001–1013.
  • Benjamini, Y. and Hochberg, Y. (1995). Controlling the false discovery rate: A practical and powerful approach to multiple testing. J. Roy. Statist. Soc. Ser. B 57 289–300.
  • Berkes, I., Gabrys, R., Horváth, L. and Kokoszka, P. (2009). Detecting changes in the mean of functional observations. J. R. Stat. Soc. Ser. B Stat. Methodol. 71 927–946.
  • Biswal, B. B. et al. (2010). Toward discovery science of human brain function. Proc. Natl. Acad. Sci. USA 107 4734–4739.
  • Bosq, D. (2000). Linear Processes in Function Spaces: Theory and Applications. Lecture Notes in Statistics 149. Springer, New York.
  • Botev, Z. I., Grotowski, J. F. and Kroese, D. P. (2010). Kernel density estimation via diffusion. Ann. Statist. 38 2916–2957.
  • Bullmore, E., Fadili, J., Breakspear, M., Salvador, R., Suckling, J. and Brammer, M. (2003). Wavelets and statistical analysis of functional magnetic resonance images of the human brain. Stat. Methods Med. Res. 12 375–399.
  • Cole, D. M., Smith, S. M. and Beckmann, C. F. (2010). Advances and pitfalls in the analysis and interpretation of resting-state FMRI data. Frontiers in System Neuroscience 4 1–15.
  • Damoiseaux, J. S., Rombouts, S. A. R. B., Barkhof, F., Scheltens, P., Stam, C. J., Smith, S. M. and Beckmann, C. F. (2006). Consistent resting-state networks across healthy subjects. Proc. Natl. Acad. Sci. USA 103 13848–13853.
  • Diggle, P., Rowlingson, B. and Su, T.-L. (2005). Point process methodology for on-line spatio-temporal disease surveillance. Environmetrics 16 423–434.
  • Doucet, G., Naveau, M., Petit, L., Zago, L., Crivello, F., Jobard, G., Delcroix, N., Mellet, E., Tzourio-Mazoyer, N., Mazoyer, B. and Joliot, M. (2012). Patterns of hemodynamic low-frequency oscillations in the brain are modulated by the nature of free thought during rest. Neuroimage 59 3194–3200.
  • Dryden, I. L., Bai, L., Brignell, C. J. and Shen, L. (2009). Factored principal components analysis, with applications to face recognition. Stat. Comput. 19 229–238.
  • Dutilleul, P. (1999). The MLE algorithm for the matrix normal distribution. J. Stat. Comput. Simul. 64 105–123.
  • Ferraty, F. and Vieu, P. (2006). Nonparametric Functional Data Analysis: Theory and Practice. Springer, New York.
  • Friston, K. J., Frith, C. D., Liddle, P. F. and Frackowiak, R. S. J. (1993). Functional connectivity: The principal-component analysis of large (PET) data sets. Journal of Cerebral Blood Flow and Metabolism 13 5–14.
  • Fuentes, M. (2006). Testing for separability of spatial-temporal covariance functions. J. Statist. Plann. Inference 136 447–466.
  • Genton, M. G. (2007). Separable approximations of space–time covariance matrices. Environmetrics 18 681–695.
  • Gohberg, I., Goldberg, S. and Kaashoek, M. A. (2003). Basic Classes of Linear Operators. Birkhäuser, Basel.
  • Härdle, W. and Simar, L. (2007). Applied Multivariate Statistical Analysis, 2nd ed. Springer, Berlin.
  • Hörmann, S. and Kokoszka, P. (2010). Weakly dependent functional data. Ann. Statist. 38 1845–1884.
  • Horváth, L. and Kokoszka, P. (2012). Inference for Functional Data with Applications. Springer, New York.
  • Hušková, M. and Kirch, C. (2008). Bootstrapping confidence intervals for the change-point of time series. J. Time Series Anal. 29 947–972.
  • Hušková, M. and Kirch, C. (2010). A note on Studentized confidence intervals for the change-point. Comput. Statist. 25 269–289.
  • Jenkinson, M., Bannister, P. R., Brady, J. M. and Smith, S. M. (2002). Improved optimisation for the robust and accurate linear registration and motion correction of brain images. NeuroImage 17 825–841.
  • Kirch, C. (2006). Resampling methods for the change analysis of dependent data. Ph.D. thesis, Univ. Cologne, Cologne. Available at http://kups.ub.uni-koeln.de/volltexte/2006/1795/.
  • Kirch, C. (2007). Block permutation principles for the change analysis of dependent data. J. Statist. Plann. Inference 137 2453–2474.
  • Kirch, C. and Politis, D. N. (2011). TFT-bootstrap: Resampling time series in the frequency domain to obtain replicates in the time domain. Ann. Statist. 39 1427–1470.
  • Kokoszka, P. and Leipus, R. (1998). Change-point in the mean of dependent observations. Statist. Probab. Lett. 40 385–393.
  • Lahiri, S. N. (2003). Resampling Methods for Dependent Data. Springer, New York.
  • Lindquist, M. A., Waugh, C. and Wager, T. D. (2007). Modeling state-related fMRI activity using change-point theory. Neuroimage 35 1125–1141.
  • Long, C. J., Purdon, P. L., Temereanca, S., Desai, N. U., Hämäläinen, M. S. and Brown, E. N. (2011). State-space solutions to the dynamic magnetoencephalography inverse problem using high performance computing. Ann. Appl. Stat. 5 1207–1228.
  • Mitchell, M. W., Genton, M. G. and Gumpertz, M. L. (2005). Testing for separability of space–time covariances. Environmetrics 16 819–831.
  • Morris, J. S., Baladandayuthapani, V., Herrick, R. C., Sanna, P. and Gutstein, H. (2011). Automated analysis of quantitative image data using isomorphic functional mixed models, with application to proteomics data. Ann. Appl. Stat. 5 894–923.
  • Nam, C. F. H., Aston, J. A. D. and Johansen, A. M. (2012). Quantifying uncertainty in change points. J. Time Series Anal. To appear. DOI:10.1111/j.1467-9892.2011.00777.x.
  • Ogawa, S., Lee, T. M., Kay, A. R. and Tank, D. W. (1990). Brain magnetic resonance imaging with contrast dependent on blood oxygenation. Proc. Natl. Acad. Sci. USA 87 9868–9872.
  • Page, E. S. (1954). Continuous inspection schemes. Biometrika 41 100–115.
  • Politis, D. N. (2011). Higher-order accurate, positive semidefinite estimation of large-sample covariance and spectral density matrices. Econometric Theory 27 703–744.
  • Ramsay, J. O. and Silverman, B. W. (2005). Functional Data Analysis, 2nd ed. Springer, New York.
  • Robinson, L. F., Wager, T. D. and Lindquist, M. A. (2010). Change point estimation in multi-subject fMRI studies. NeuroImage 49 1581–1592.
  • Ruttimann, U. E., Unser, M., Rawlings, R. R., Rio, D., Ramsey, N. F., Mattay, V. S., Hommer, D. W., Frank, J. A. and Weinberger, D. R. (1998). Statistical analysis of functional MRI data in the wavelet domain. IEEE Trans. Med. Imaging 17 142–154.
  • Van Loan, C. F. and Pitsianis, N. (1993). Approximation with Kronecker products. In Linear Algebra for Large Scale and Real-Time Applications (Leuven, 1992) (M. S. Moonen and G. H. Golub, eds.). NATO Advanced Science Institutes Series E: Applied Sciences 232 293–314. Kluwer Academic, Dordrecht.
  • Vanhaudenhuyse, A., Demertzi, A., Schabus, M., Noirhomme, Q., Bredart, S., Boly, M., Phillips, C., Soddu, A., Luxen, A., Moonen, G. and Laureys, S. (2010). Two distinct neuronal networks mediate the awareness of environment and of self. J. Cogn. Neurosci. 23 570–578.
  • Werner, K., Jansson, M. and Stoica, P. (2008). On estimation of covariance matrices with Kronecker product structure. IEEE Trans. Signal Process. 56 478–491.
  • Worsley, K. J., Liao, C. H., Aston, J. A. D., Petre, V., Duncan, G. H., Morales, F. and Evans, A. C. (2002). A general statistical analysis for fMRI data. Neuroimage 15 1–15.
  • Zipunnikov, V., Caffo, B., Crainiceanu, C., Yousem, D. M., Davatzikos, C. and Schwartz, B. S. (2011). Multilevel functional principal component analysis for high-dimensional data. J. Comput. Graph. Statist. 20 852–873.

Supplemental materials

  • Supplementary material: Supplementary material for evaluating stationarity via change-point alternatives with applications to fMRI data. The supplementary material provides added technical details along with the proofs of the results in the paper.