
JOURNAL OF COMMUTATIVE ALGEBRA
Vol. , No. , YEAR

https://doi.org/jca.YEAR..PAGE

AN INCREASING NORMALIZED DEPTH FUNCTION

S. A. SEYED FAKHARI

ABSTRACT. Let K be a field and S = K[x1, . . . ,xn] be the polynomial ring in n variables over
K. Assume that I is a squarefree monomial ideal of S. For every integer k ≥ 1, we denote the
k-th squarefree power of I by I[k]. The normalized depth function of I is defined as gI(k) =
depth(S/I[k])− (dk− 1), where dk denotes the minimum degree of monomials belonging to I[k].
Erey, Herzog, Hibi and Saeedi Madani conjectured that for any squarefree monomial ideal I, the
function gI(k) is nonincreasing. In this short note, we provide a counterexample for this conjecture.
Our example in fact shows that gI(2)−gI(1) can be arbitrarily large.

1. Introduction

Let K be a field and S = K[x1, . . . ,xn] be the polynomial ring in n variables over K. For any
squarefree monomial ideal I ⊂ S and for any positive integer k, the k-th squarefree power of I
denoted by I[k] is the ideal generated by the squarefree monomials belonging to Ik. In [3], Erey,
Herzog, Hibi and Saeedi Madani studied the depth of squarefree powers. They introduced the
notion of normalized depth function as follows. Let ν(I) be the largest integer k with I[k] 6= 0. For
each integer k = 1,2, . . . ,ν(I), we denote the minimum degree of monomials belonging to I[k] by
dk. The normalized depth function of I is the function gI : {1,2, . . . ,ν(I)}→ Z≥0 defined by

gI(k) = depth(S/I[k])− (dk−1).

The same authors conjectured that for any squarefree monomial ideal I, the function gI(k) is
nonincreasing. This conjecture is known to be true in special cases (see e.g., [2], [3], [5]). However,
in the next section, we provide a class of ideals disproving the conjecture. Our example indeed
shows that the difference gI(2)−gI(1) can be arbitrarily large.

2. An example

In Theorem 2.2, we introduce a class of ideals I showing that the normalized depth function gI(k)
is not necessarily nonincreasing.

We recall that for any graph G with vertex set V (G) = {1,2, . . . ,n} and edge set E(G), its edge
ideal is defined as

I(G) = (xix j | {i, j} ∈ E(G))⊂ S.

Moreover, a graph G is said to be sequentially Cohen-Macaulay over K if S/I(G) is sequentially
Cohen-Macaulay (one may look at [9, Chapter III] for the definition of sequentially Cohen-
Macaulay modules). We say that G is a sequentially Cohen-Macaulay graph if it is sequentially
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Cohen-Macaulay over any field K. A subset U of V (G) is called an independent subset of G if
there are no edges among the vertices of U . We say that a subset C ⊆V (G) is a minimal vertex
cover of G if, first, every edge of G is incident with a vertex in C and, second, there is no proper
subset of C with the first property. Note that C is a minimal vertex cover if and only if V (G)\C
is a maximal independent subset of G. Moreover, it is known by [7, Lemma 9.1.4] that every
minimal prime ideal of I(G) is of the form (xi | i ∈C) where C is a minimal vertex cover of G.
Since I(G) is a radical ideal, it follows that the irredundant primary decomposition of I(G) is
given by

I(G) =
⋂
(xi | i ∈C),

where the intersection is taken over all minimal vertex covers C of G.
We first need the following simple lemma.

Lemma 2.1. Let T be a tree with n vertices. Then depth(S/I(T )) is equal to the minimum size of
a maximal independent subset of T .

Proof. It is well-known that any tree is a sequentially Cohen-Macaulay graph (see e.g., [6, Theo-
rem 1.2]). Hence, it follows from [4, Theorem 4] (see also [8, Corollary 3.33]) that depth(S/I(T ))
is equal to n− h, where h denotes the maximum height of an associated prime of I(T ). Thus,
using the primary decomposition of I(T ) given above, we deduce that h is the maximum size of a
minimal vertex cover of T . Therefore, n−h is the minimum size of a maximal independent subset
of T . �

We are now ready to present our example.

Theorem 2.2. Let n≥ 6 be an integer and consider the polynomial ring S =K[x1, . . . ,xn]. For
each integer i with 1≤ i≤ n−4, set ui := x1x3xi+4. Also, set

un−3 := x1x4x5, un−2 := x2x3x4 and un−1 := x2x3x6.

Let I be the squarefree monomial ideal generated by u1,u2, . . . ,un−1. Then
(i) gI(1) = 1; and

(ii) gI(2) = n−6.
In particular, gI(2) = gI(1)+n−7.

Proof. (i) One can easily see that p= (x4, . . . ,xn) is a minimal prime ideal of I. Thus,

(1) depth(S/I)≤ dim(S/p) = 3.

Consider the following short exact sequence.

0−→ S
(I : x3)

−→ S
I
−→ S

(I,x3)
−→ 0

It follows from depth lemma [1, Proposition 1.2.9] that

(2) depth(S/I)≥min
{

depth(S/(I : x3)),depth(S/(I,x3))
}
.

Since (I,x3) = (un−3,x3), we have

(3) depth(S/(I,x3)) = n−2≥ 4.

Submitted to Journal of Commutative Algebra - NOT THE PUBLISHED VERSION

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43



INCREASING NORMALIZED DEPTH FUNCTION 3

On the other hand, notice that

(I : x3) = (x2x4,x2x6)+(x1xi+4 | 1≤ i≤ n−4).

In particular, there is a tree T with vertex set [n]\{3} such that (I : x3) = I(T ). It is easy to see
that {1,2} is a maximal independent set in T of minimum size. Since 3 is not a vertex of T ,
Lemma 2.1 implies that

(4) depth(S/(I : x3)) = 2+1 = 3.

We conclude from inequalities (2), (3) and (4) that depth(S/I)≥ 3. This inequality together with
inequality (1) implies that depth(S/I) = 3. Equivalently, gI(1) = 1.

(ii) It is obvious that I[2] is the principal ideal generated by un−3un−1. Thus, depth(S/I[2]) =
n−1. In other words, gI(2) = n−6. �

Remark 2.3. Note that for the ideal in Theorem 2.2, we have ν(I). Thus, Theorem 2.2 shows that
in general the function gI(k) can be an increasing function. However, we do not have any example
of a graph G for which the function gI(G)(k) is not nonincreasing. So, the conjecture posed in [3]
might be true for edge ideals.
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