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FIXED LOCI IN EVEN LINKAGE CLASSES

SCOTT NOLLET

ABSTRACT. Let L be an even linkage class of pure codimension two subschemes of a projective space.
When L has an integral minimal element X0, it is known which deformation classes in L contain
integral subschemes (varieties). When L does not have an integral minimal element, we use fixed loci to
give necessary conditions on deformation classes in L to contain varieties and give examples showing
sharpness. As an application, we determine all deformation classes containing integral curves in even
linkage classes whose corresponding Rao module is a complete intersection module.

1. Introduction

Linkage theory was used by Halphen and Noether to classify space curves in the 1880s and has been
updated with scheme-theoretic foundations over the past 50 years [20, 28]. The theory works best
for linkage of codimension two subschemes of Pn, where Rao’s correspondence gives a bijection
between even linkage classes and stable equivalence classes of certain reflexive sheaves [22, 30, 31].
Furthermore, each non-ACM even linkage class L has a minimal subscheme X0 from which all others
are obtained by sequences of basic double links followed by a cohomology preserving deformation.
This was first observed by Lazarsfeld and Rao for the even linkage class of a high degree embedding of
a curve in P3 [16], conjectured in generality by Bolondi and Milgiore [4], proved for space curves by
Martin-Deschamps and Perrin [18], for locally Cohen-Macaulay codimension two subschemes in Pn

with n≥ 3 by Ballico, Bolondi and Migliore [3], and finally for subschemes in Pn of pure codimension
two [22]. Thus each even linkage class L of codimension two subschemes of Pn is stratified by
irreducible locally closed subspaces HX ⊂Hilb(Pn) consisting of constant cohomology deformations
of X in L [26, 1.3]. A question that might have interested Halphen and Noether is the following:

Question 1.1. Fix an even linkage class L of codimension two subschemes in Pn. Which deformation
classes HX ⊂L contain integral subschemes (varieties)?

The even linkage class L of ACM subschemes has been deeply studied by many authors. Here
Question 1.1 has a complete answer [25, 1.9 and 3.3], which can be described in various ways:
HX ⊂L contains an integral subscheme if and only if the gamma character γX of Martin-Deschamps
and Perrin [18] is positive and connected ⇐⇒ the numerical character of Gruson and Peskine [9]
has no gaps ⇐⇒ the invariant m(X) of Sauer [32] is at least three. Steffen [33] used Chang’s filtered
Bertini theorem [5] to completely determine when X is smoothable, extending work of various authors
[9, 17, 32]. For n = 3,4 the smoothable and integral answers agree, otherwise not. For n > 5, the only
smooth ACM varieties are the complete intersections, as predicted by Hartshorne’s conjecture [11].

We therefore focus on even linkage classes L of non-ACM subschemes, where there is a minimal
element X0 and well-defined height hX for each X ∈ L [3, 18, 22]. The function ηX : Z → Z
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FIXED LOCI IN EVEN LINKAGE CLASSES 2

defined by ηX(l) =∆n(h0IX(l)−h0IX0(l−hX)) is non-negative, has sum ∑ηX(l) = hX , and uniquely
determines HX ⊂L [26, 1.9 (b)]. For X ∈L , let e(X) = max{l : Hn−2(OX(l)) 6= 0} be the speciality
of X and s(X)≤ t(X) be the two lowest degrees of properly intersecting hypersurfaces containing X .
Then ηX(l)> 0 for s(X)≤ l < s(X0)+hX , so the function θX(l) = ηX(l)−

(l−s(X)
1

)
−
(l−s(X0)−hX

1

)
is

non-negative and can give a simple test for integrality:

Theorem 1.2. Suppose X0 is integral and X ∈L is not minimal. Then HX has an integral element if
and only if

(1) θX is connected about [s(X0)+hX , t(X0)+hX −1] and
(2) s(X)≤ e(X0)+n+1+hX

The image of a high degree embedding of a smooth curve in P3 is minimal in its even linkage
class [16], so Theorem 1.2 tells which curves have integral deformations. Paxia and Ragusa [27] used
an earlier version of this result [21] to determine the integral curves for even linkage classes L of
Buchsbaum curves in P3. Theorem 1.2 is a corollary of Theorem 5.1 in the text. The proof is mostly
found in [26, 3.4], but we remove the locally Cohen-Macaulay hypothesis used in that proof.

Our main purpose here is to address the case where X0 may not be taken integral. Condition (1) in
Theorem 1.2 is necessary for HX ∈L to contain an integral variety and sufficient if X0 < Y ≤ X with
Y integral, so the problem becomes locating minimal integral elements Y . A natural obstruction to
integrality occurs when all elements of HX contain a fixed variety of codimension two, much like the
base locus of a family of divisors in the Bertini theorems. One can consider the naive fixed locus

F(L ) =
⋂

X minimal in L

X ,

but it is unclear how F(L ) extends to other deformation classes HX with X not minimal. The key
idea here is the definition of fixed loci Fs for each s < s(X0) which depend on how deep in an N -type
resolution for IX0 they appear. These loci form a filtration of F(L ) which are easier to compute and
determine how they proliferate to other deformation classes (Proposition 4.1). We identify an element
X1 ∈L (Definition 5.5) as a natural candidate for minimal integral element and prove an analogous
result to Theorem 1.2:

Theorem 1.3. Let X ∈L with hX > 0.

(1) If X is integral, then X ≥ X1.
(2) Conversely, if X1 is integral, then HX contains an integral element if and only if

(a) X1 ≤ X.
(b) θX is connected about [s(X0)+hX , t(X0)+hX −1].

Theorem 1.3 is sharp in the sense that there are examples where X0 cannot be taken integral, but
X1 can, in which case we get a complete description of the varieties in L up to deformation as well
as a Lazarsfeld-Rao property for these classes. There are examples in which X cannot be a variety
when θX = 0, so we also construct X2 ∈L giving a result analogous to Theorem 1.3 for varieties with
θX 6= 0 (Remark 5.8).

In §2 we recall linkage theory of codimension two subschemes and prove a result reminiscent of
Serre duality for non-locally Cohen-Macaulay subschemes, while §3 gives some linkage-theoretic
constructions of integral varieties. In §4 we introduce the fixed loci Fs for an even linkage class L and
in §5 we use them to prove Theorem 1.2 and Theorem 1.3, including some examples to show sharpness.
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FIXED LOCI IN EVEN LINKAGE CLASSES 3

In §6 we apply our results to the even linkage class L of curves in P3 corresponding to Rao module
a quotient of the homogeneous coordinate ring by a regular sequence, determining the deformation
classes HX containing an integral curve. We compare this result to work of Martin-Deschamps and
Perrin who determined exactly which deformation classes contain smooth (connected) curves [19]. The
simplest example where the answers differ is Hartshorne’s example of an integral but non-smoothable
curve [13].

We work in the context of liaison theory for pure codimension two subschemes in Pn
k [14, §4]

without assuming the locally Cohen-Macaulay hypothesis, to allow applications to integral varieties
such as cones over integral varieties and general projections of smooth varieties. We take k to be an
algebraically closed. We are studying integral subschemes in even linkage classes of pure codimension
two subschemes on Pn

k , so we assume n ≥ 3. The term deformation in this paper always refers to
cohomology-preserving deformation through schemes in a fixed even linkage class as explained in
Section 2. We thank Prabhakar Rao for useful conversations.

2. Even linkage classes

We recall linkage theory for pure codimension two subschemes in Pn [14, 22]. We write X S∩T∼ Y when
X and Y are directly linked by S∩T and X

s,t∼ Y if s = degS, t = degT . Subschemes X ,Y ⊂ Pn are
evenly linked if there is an even chain of direct links between them. For example, if X ∈L lies on a

hypersurface S of degree s and we link twice via X S∩T∼ Y S∩T ′∼ X ′ with degT ′ = degT +h, then X ′ is

obtained from X by a double link of height h on S and write X
s,h→ X ′. The double link is ascending if

h≥ 0 (descending otherwise) and is called a basic double link if T ′ = T ∪H with degH = h, when
there is an exact sequence

(1) 0→ O(−s−h)→IX(−h)⊕O(−s)→IX ′ → 0.

Closing under transitivity gives an equivalence relation whose equivalence classes L are called even
linkage classes. For X ∈L , let HX consist of members of L with the same cohomology as X , in
other words, HX = {Y ∈L : hi(IX(l)) = hi(IY (l)) for all i ≥ 0 and l ∈ Z}: the HX clearly form a
stratification of L . In the best understood even linkage class L of Arithmetically Cohen-Macaulay
(ACM) subschemes, the HX form smooth open irreducible subsets of the Hilbert scheme [6].

2.1. The Lazarsfeld-Rao property. An even linkage class L of non-ACM subschemes of pure codi-
mension two in Pn has an additional structure first observed in [16]. A reflexive, transitive relation
on L is given by X ≤ Y if there is a sequence of height one basic double links X

s1,1→ X1 · · ·
sn,1→ Xn

followed by a deformation to Y in HXn (i.e. a cohomology-preserving deformation through schemes
in L ). The Lazarsfeld-Rao property [3, 16, 18, 22] says that L has a minimal element X0 satisfying
X0 ≤ X for all X ∈L .

2.2. Rao’s correspondence and height. An E -type resolution for subscheme X ⊂ Pn is an exact
sequence 0→ E →F →IX → 0 where F is dissocié (a direct sum of line bundles) and H1

∗ (E ) = 0.
Rao’s correspondence [22, 31] says that if X ⊂ Pn has pure codimension two, then the map X 7→ E
gives a bijection between even linkage classes L of pure codimension two subschemes in Pn and
stable equivalence classes of reflexive sheaves E satisfying H1

∗ (E ) = 0 and Ext 1(E ∨,O) = 0. An
N -type resolution is an exact sequence 0→ F → N → IX → 0 where F is a direct sum of
line bundles, H1

∗ (N
∨) = 0 and Ext 1(N ,O) = 0: again, X 7→N gives a bijection between even
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FIXED LOCI IN EVEN LINKAGE CLASSES 4

linkage classes and stable equivalence classes of the relevant reflexive sheaves. The cone construction
interchanges E and N type resolutions under direct linkage [22, 1.8 and 1.11]. Here X is locally Cohen-
Macaulay if and only if E (or N ) is a vector bundle. The Rao modules of X are the graded modules
Mi(X) = H i

∗(IX),0 < i < n−1 over the homogeneous coordinate ring S for Pn. A consequence of
Rao’s correspondence is that the Rao modules Mi(X) = H i

∗(IX),0 < i < n−1 are the same modulo
shift because Mi(X) ∼= H i+1

∗ (E ) and stable equivalence preserves these graded modules up to shift.
The ACM even linkage class L corresponds to the stable equivalence class of the zero sheaf via E
or N type resolution and in this case all the Rao modules Mi(X) are zero. If L is a non-ACM even
linkage class, then E is not stably equivalent to zero because if E is a reflexive sheaf with vanishing
intermediate cohomology, then E is dissocié [1, 3.1]. Thus at least one of the Rao modules must be
nonzero. Exact sequence (1) shows each height one basic double link shifts them one twist to the right,
allowing us to define the height of X ∈L by hX0 = 0 and hX is the number of twists that the higher
Rao modules are twisted rightward from those of X0.

Question 5.1 asks when the spaces HX have an integral subscheme. The following result shows that
the definition given here agrees with the definition given in [26].

Proposition 2.1. Let L be an even linkage class of pure codimension two subschemes of Pn.

(1) Let X ,Y ∈L . The following are equivalent.
(a) h0(IY (l)) = h0(IX(l)) for all i≥ 0 and l ∈ Z and hY = hX if X is not ACM.

(b) There are E -type resolutions 0→ E
φX→F →IX → 0 and 0

φY→ E →F →IY → 0.
(c) Y ∈ HX .

(2) The stratum HX is an irreducible locally closed subset of the Hilbert scheme.

Proof. First we prove the equivalence.
(a)⇒ (b) : Assuming condition (a), there is a direct sum of line bundles F and surjections

F →IX ,F →IY whose kernels EX ,EY are stably isomorphic by Rao’s correspondence [22, 2.4]. It
follows that if E0 is a minimal rank element of the stable equivalence class, then there are hX ,hY ∈ Z
and dissocié QX ,QY with EX ∼= E0(tX)⊕QX and EY ∼= E0(tY )⊕QY [22, 2.3]. If L is the ACM
even linkage class, then E0 = 0 and QX ∼= QY because the degrees of the twists are determined by
the numbers h0(IX(l))− h0(F (l)). If L is a non-ACM class, then tX = tY because hX = hY so
that the twists of the Rao modules agree. The twists of QX and QY are determined by the numbers
h0(IX(l))−h0(F (l))+h0(E0(tX + l)) so that QX ∼= QY and EX ∼= EY .

(b)⇒ (c) : One can read off all the numbers hi(IY (l)) from the resolution combined with the
equality hn(IY (l)) = hn(O(l)) for l ∈ Z.

(c)⇒ (a) : If L is not the ACM class, the Rao modules have the same twist so that hY = hX .
The proof of [26, 1.3] shows that HX is an irreducible locally closed subset of the Hilbert scheme

when L is a non-ACM even linkage class (condition (a) defined HX in that work). When L is the
ACM class, the result is known from [6]. �

2.3. Indexing the strata HX . Suppose L is a non-ACM even linkage class and let N be a least rank
reflexive sheaf corresponding to L via Rao’s correspondence [22, 31]. Then there is a twist d ∈ Z and
a direct sum of line bundles P0 for which each minimal X0 ∈L fits into the sequence

(2) 0→P0
ϕ→N0→IX0 → 0
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FIXED LOCI IN EVEN LINKAGE CLASSES 5

where N0 = N (d) [18, 22]. Using the Lazarsfeld-Rao property and repeatedly applying (1), we see
that for any X ∈L , there is Y ∈ HX with resolution

(3) 0→P0(−hY )⊕T (−1)
φ→N0(−hY )⊕T →IY → 0

where T =⊕O(−n)ηY (n) for some non-negative ηY :Z→Z satisfying ∑ηY (l) = hY (some summands
of T and T (−1) may cancel for general maps φ ). Taking difference functions of the spaces of
global sections in exact sequence (3) shows that ηX(l) = ∆nH0(IX(l))−∆nH0(IX0(l−hX)) and ηX
uniquely determines HX because we can read off all the cohomology numbers hi(IX(l)). For functions
η : Z→ Z≥0 with finite support, we set supη = max{n : η(n) 6= 0} and infη analogously. We say
that η is connected in degrees < d if η(l) 6= 0 for some l < d implies η(n) 6= 0 for all l < n < d with
similar definitions for connectedness in degrees ≤ d,> d,≥ d and η is connected about an interval
[a,b] if η is connected in degrees ≤ b and connected in degrees ≥ a. The only restriction on ηX is
connectedness in degrees < s(X0)+hX [26, 1.8] and sequence (3) shows that

(4) s(X) = min{infηX ,s(X0)+hX}.

Therefore the function θX : Z→ Z≥0 given by θX(l) = ηX(l)− 1 for s(X) ≤ l < s(X0) + hX and
θX(l) = ηX(l) otherwise is non-negative.

Example 2.2. A double line X0⊂ P3 of arithmetic genus−3 is minimal in its even linkage class L . As
will be seen in §6, X0 has a minimal N -type resolution 0→O⊕O(−2)→N0→IX0 → 0 for a rank
three bundle N0 arising from a Koszul resolution; we normalize the bundle in §6 by taking N0 =N (2).

Construct Y and Z by a sequence of basic double links X0
2,1→ X1

2,1→ X2
5,1→ Y

3,1→ Z. Applying exact
sequence (1) at each step, we obtain exact sequences 0→ O(−3)→ O(−2)⊕IX0(−1)→IX1 → 0,
0→ O(−3)→ O(−2)⊕IX1(−1)→ IX2 → 0, 0→ O(−6)→ O(−5)⊕IX2(−1)→ IY → 0 and
similarly for IZ . Substituting each resolution into the next gives an exact sequence

0→T (−1)→T ⊕IX0(−4)→IZ → 0,

where T = O(−6)⊕O(−5)⊕O(−4)⊕O(−3): here ηZ(l) = 1 for 3 ≤ l ≤ 6 and 0 otherwise. In
general, the invariant ηZ records the summands appearing in T when Z is obtained from X0 by a
sequence of height one basic double links as seen in this example. Substituting the N -type resolution
for IX0 and cancelling like summands (possible for a general map) gives a sequence of the form

(5) 0→ O(−7)⊕O(−4)⊕O(−6)→N0(−4)⊕O(−3)→IZ → 0.

Using the recipe above, θZ(6) = 1 (and θZ(l) = 0 otherwise). Here ηZ is connected in degrees < 6 and
θZ is connected about the interval [6,5]: although this interval is empty, θZ is connected about [6,5] in

the sense explained. Up to deformation, we could have constructed Z as a single double link X0
3,4→ Z,

since ηZ is agrees. Similarly, we could have constructed Y as a double link X0
3,3→ Y and we could have

constructed X2 as a double line X0
2,2→ X2. In particular, Y is a curve of degree 11 and genus 12 while Z

is a curve of degree 14 and genus 21 [18, III, 3 (b)]. We will see in §6 that Y is smoothable in L while
Z deforms in L to an integral curve that is not smooth. In fact, This is essential Hartshorne’s example
of an integral curve that is non-smoothable in its Hilbert scheme component [13].

We will use the following result to rule out integrality of some deformations.

Lemma 2.3. Let L be an even linkage class of codimension two subschemes in Pn with minimal
element X0 and let X ∈L . Then
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FIXED LOCI IN EVEN LINKAGE CLASSES 6

(a) θX = 0 ⇐⇒ s(X) = s(X0).
(b) If θX = 0 and no minimal Y lies on an integral degree s(X0) hypersurface, then X does not lie

on an integral surface of degree s(X0). In particular, X is not integral.

Proof. (a) We may assume hX > 0, since both statements hold for X minimal. Recalling that ηX is
connected in degrees < (X0)+hX , equation (4) shows that s(X) = infηX = s(X0) ⇐⇒ ηX(l) = 1 for
s(X0)≤ l < s(X0)+hX (ηX(l) = 0 otherwise) ⇐⇒ θX = 0 by definition of θX .

(b) Now suppose θX = 0, so up to deformation X is a double link X0
s(X0),hX→ X and for general such

X we could write X0
s(X0),t(X0)∼ X∗0

s(X0),t(X0)+hX∼ X , where X∗0 is a minimal element for the dual even
linkage class. Form the space of triples

D = {(Y,S,T ) : Y ∈ HX0 ,Y ⊂ S∩T}

where S,T are hypersurfaces of degrees s(X0), t(X0) meeting properly. Then since HX0 is irreducible
and the general fibers of the projection p : D→ HX0 are irreducible of the same dimension, the map p
is dominant and D is irreducible. Martin-Deschamps and Perrin call D a drape scheme (“schéma de
drapeaux” [18, VII, §3]). There is a similar map q : D→ HX∗0

taking (Y,S,T ) to the scheme linked to
Y by S∩T . Since D is irreducible, the general surface S of degree s(X0) is not integral and since q
is dominant, the general surface S of degree s(X0) containing Y ∗ ∈ H∗X0

is also not integral. We can

construct a similar drape scheme for the link X∗0
s(X0),t(X0)+hX∼ X to see that the general Z ∈ HX is not

contained in an integral surface of degree s(X0), hence this is true for all Z ∈ HX , in particular X itself
is not integral [26, 3.1]. �

If X S∩T∼ Y via hypersurfaces S,T of degrees s, t, there is an exact sequence [14, 4.1]

(6) 0→IS∩T →IY →Hom(OX ,OS∩T )→ 0.

If X is locally Cohen-Macaulay, then the third sheaf is isomorphic to ωX(n+1− s− t) and we can use
Serre duality to see that hk(ωX(l)) = hn−2−k(OX(−l)). If X is not locally Cohen-Macaulay, we can
still use E and N type resolutions to obtain the analogous result when k = 0.

Lemma 2.4. h0(Hom(OX ,OS∩T )(l) = hn−2(OX(s+ t−1−n− l)) for all l ∈ Z.

Proof. The resolution 0→ O(−s− t)→ O(−s)⊕O(−t)→ IS∩T → 0 and an E -type resolution
0 → E → Q → IY → 0 give rise to exact sequences on global sections. Combining with (6),
h0(Hom(OX ,OS∩T )(l) is equal to

(7) h0(Q(l))−h0(E (l))−h0(O(l− s))−h0(O(l− t))+h0(O(l− s− t)).

The cone construction for the linkage X S∩T∼ Y gives

0→Q∨(−s− t)→ E ∨(−s− t)⊕O(−s)⊕O(−t)→IX → 0.

Twisting by s+ t−1−n− l and taking the long exact cohomology sequence shows that

hn−2(OX(s+ t−1−n− l)) = hn−1(IX(s+ t−1−n− l)) = hn(Q∨(−1−n− l))

−hn(E∨(−1−n− l))−hn(O(t−1−n− l))−hn(O(s−1−n− l))+hn(IX(s+ t−1−n− l))

Comparing with (7), the first, third and fourth terms agree by Serre duality. Since E is reflexive, we
have H0(E (l)) = Hom(O,E (l))∼= Hom(E ∨(−l),O)∼= Hn(E ∨(−l−1−n))′ by [12, III, 7.1 (c)], so
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FIXED LOCI IN EVEN LINKAGE CLASSES 7

that the second terms agree. The last terms agree because hn(IX(l)) = hn(OX(l)). Combining, we see
that both sides are equal. �

3. Construction of integral subschemes

We construct integral subschemes with linkage. Proposition 3.4 fully proves [26, 3.5] as it removes the
locally Cohen-Macaulay hypothesis. We consider subschemes of pure codimension two in Pn with
n≥ 3. Since there are no embedded primes, to show integrality it suffices to show integrality away
from a set of codimension at least three.

Lemma 3.1. Let Y ⊂ T ⊂ Pn be a generic Cartier divisor on an integral hypersurface. Suppose
IX ,T (s) is globally generated away from B, codimB≥ 3, and H0(IX ,T (s−1)) 6= 0. Then the general
link Y ∼ X by S∩T with degS = s yields an integral subscheme X.

Proof. Since IY,T is generically a line bundle along Y and H0(IY,T (s)) is globally generated away
from B of codimension≥ 3, the divisor given by a general section g∈H0(IY,T (s)) is generically equal
to Y along Y . Lifting g via the surjection H0(IY (s))→ H0(IY,T (s)) gives a hypersurface S ⊂ Pn

with S∩T = Y ∪X and Y ∩X a proper intersection. Since there exists 0 6= h ∈ H0(IY,T (s−1)), the
sections h · l with l ∈ H0(OT (1)) separate points and tangent vectors away from the zero set H of h
and the corresponding map T −H→ PN is unramified and has image of dimension equal to dimT ≥ 2.
Therefore by Bertini’s theorem [15, 6.10] (valid for unramified maps over arbitrary algebraically closed
fields), the general hyperplane section is geometrically irreducible and reduced, so (S∩T )−H is
integral for general S. Since IY,T (s) is globally generated away from B, S∩T contains no irreducible
components of H ∩T , hence (S∩T )−Y is integral and so is X = (S∩T )−Y . �

Example 3.2. The conclusion can fail when H0(IX ,T (s−1)) = 0: take T ⊂ P3 to be a smooth quadric
surface, Y a union of two skew lines and s = 2.

Corollary 3.3. Let Y ⊂ Pn be a generic local complete intersection of codimension two. If s ≤ t,
ϕ : ⊕l≤sO(−l)q(l)⊕O(−t)→ IY is a map with codimSuppCokerϕ ≥ 3 and H0(IY (s− 1)) 6= 0,
then the general link Y

s,t∼ X is integral.

Proof. Since IY (t) is globally generated away from a set of codimension ≥ 3 and is generically
generated by two sections, an argument like that of Lemma 3.1 shows the general hypersurface
T of degree t containing Y is integral and Y is generically Cartier on T . For the general map
O(−t)→ IY defining T , a lift of the map to ⊕l≤sO(−l)q(l)⊕O(−t) splits and we get an induced
map ⊕l≤sO(−l)q(l)→IY,T whose cokernel is supported on a set of codimension ≥ 2. Now apply
Lemma 3.1 to find a linking hypersurface S. �

The following result removes the locally Cohen-Macaulay assumption from [26, 3.5].

Proposition 3.4. Let X ∈ L be integral and 0 < h. Let d ≤ e(X)+ n+ 1+ h be an integer with
d = s(X) or d ≥ t(X). Then the general scheme X ′ obtained from X by a double link of type (d,h) is
integral.

Proof. From [26, 3.1] we know that a general hypersurface T of degree d containing X is integral and
X is generically Cartier on T . Since X is a generic local complete intersection, a general hypersurface
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FIXED LOCI IN EVEN LINKAGE CLASSES 8

S of degree s� 0 containing X meets T properly and links X geometrically to Y and we have the exact
sequence (6). Twisting by d +h and taking sections gives

0→ H0(OT (h))
· f→ H0(IY,T (d +h))→ H0(Hom(OX ,OS∩T )(d +h))→ 0,

where f is the equation of S on T . The hypothesis on d and Lemma 2.4 show that the rightmost group
is nonzero, so the linear system in the middle cuts out a scheme Y ′ with Y ⊂ Y ′ ⊂ Y ∪X = T ∩S and
the second inclusion is proper because not every section of H0(IY,T (d + h)) is a multiple of f , so

codim(Y ′−Y ) ≥ 3. Apply Lemma 3.1 to see that the general link Y T∩S′∼ X ′ with degS′ = s+ h is
integral. �

4. Fixed loci of an even linkage class

Fix an even linkage class L of codimension two subschemes in Pn with X0 minimal. We introduce
fixed loci Fs ⊂ F(L ) for s < s(X0) that are amenable to calculation. We prove some elementary
properties and use these fixed loci to give obstructions to integrality of subschemes in L . We also
recover the result that if s(X)> e(X)+n+1, then X is the unique minimal element in L .

Start with the N -type resolution (2) for X0, write P0 =⊕O(−n)p(n) and for s ∈ Z, split P0 into
lower and upper summands as P≤s

0 = ⊕n≤sO(−n)p(n) and P>s
0 = ⊕n>sO(−n)p(n). The quotients

Qs = N0/P
≤s
0 are independent of the choice of ϕ for s < s(X0) because H0(IX0(s)) = 0, so we

unambiguously define

(8) Fs = SingQs

where SingF = {x : dimk(x)Fx⊗ k(x)> rankF} is the singular scheme of the sheaf F .

Proposition 4.1. Fix s < s(X0).

(a) If X ∈L is minimal, then Fs ⊂ X.
(b) If Y ∈L and s+hY < s(Y ), then Fs ⊂ Y .
(c) If s1 < s2 < s(X0), then Fs1 ⊂ Fs2 .

Proof. Suppose X ∈ HX0 corresponds to a map ϕ in (2). The snake lemma gives an exact sequence
0→P≤s

0 →Qs→IX → 0. Localizing at x ∈ SingQs and tensoring with k(x) gives the right exact
P≤s

0 ⊗ k(x)→Qs⊗ k(x)→ IX ⊗ k(x)→ 0 which shows that dim(IX)⊗ k(x) > rankIX = 1, so
x ∈ X . We conclude that SingQs ⊂ SingIX = X . This proves part (a).

Consider Y ∈L as in (b). First assume Y is obtained from X0 by a sequence of height one basic
double links, so Y has resolution (3). The hypothesis s(Y )> s+hY assures that the summands O(−a)
of T satisfy a > s+ hY , hence the composite map P<s

0 (−hY ) ⊂P0(−hY )→ T is zero, giving a
snake diagram

P>s
0 (−hY )⊕T (−1)

↓
0 → P≤s

0 (−hY ) → N0(−hY )⊕T → Qs(−hY )⊕T → 0
↓ ↓ ↓

0 → P0(−hY )⊕T (−1) → N0(−hY )⊕T → IY → 0
↓

P>s
0 (−hY )⊕T (−1)
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FIXED LOCI IN EVEN LINKAGE CLASSES 9

and we conclude as in part (a) that Fs ⊂ Y . Since general Z ∈ HY has resolution (3), we see that Fs ⊂ Z
for general Z ∈ HY . Containment of the closed set Fs is a closed property of the Hilbert scheme, so
Fs ⊂ Y holds for all such Y .

For part (c), write P≤s1
0 =⊕n≤s1O(−n)p(n),P≤s2

0 =⊕n≤s2O(−n)p(n) and R =⊕s1<n≤s2O(−n)p(n)

to obtain the exact sequence 0→R→Qs1 →Qs2 → 0. Then apply another snake diagram argument
as in part (a). �

Thus for s = s(X0) we obtain closed sets . . .Fs−2 ⊂ Fs−1 ⊂ F(L ). The last inclusion can be strict
(compare Lemma 6.1 and Remark 6.2 (b)). These fixed loci give a necessary condition on integral
elements.

Corollary 4.2. Let f = inf{s ∈ Z : codimFs = 2 or s = s(X0)}. If Y ∈L is non-minimal and integral,
then s(Y )≤ f +hY .

Proof. If there exists s < s(X0) with codimFs = 2, then f < s(X0) and if s(Y )> f +hY , then Ff ⊂ Y
by Proposition 4.1 and degFf ≤ degX0 < degY , so Y is cannot be integral. Otherwise f = s(X0) and
s(Y )≤ f +hY for all Y by (4). �

Consequently we obtain a familiar condition for L to have a unique minimal element.

Corollary 4.3. If s(X0)> e(X0)+n+1, then X0 is the unique minimal element of L .

Proof. There is a direct link between X0 and minimal X∗0 for the dual linkage class by hypersurfaces
S,T of degrees s = s(X0), t = t(X0) [22, 3.30]. The linkage sequence

0→IS∩T →IX∗0
→Hom(OX0 ,OS∩T )→ 0

shows that Y has an E -type resolution of the form

0→F → O(−s)⊕O(−t)⊕R→IY → 0, R =
⊕
n>t

O(−n)r(n)

because H0(Hom(OX0 ,OS∩T )(l)) = 0 for l ≤ t due to Lemma 2.4 and s > e(X0)+n+1. The cone
construction gives N -type resolution

0→P0→N →IX0 → 0

with N =F∨(−s− t) and P0 =R∨(−s− t) =⊕n>tO(n− s− t)r(n) =⊕m<sO(−m)r(s+t−m) so that
P<s

0 = P0 and SingQs = X0 is the unique minimal element in L . �

Example 4.4. Let L be the even linkage class of two skew lines X0 ⊂ P3. Then s(X0) = 2 and
sequence (2) takes the form

0→ O(−2)2→ΩP3 →IX0 → 0

so that Qs = ΩP3 and SingQs = /0, consistent with the fact that the family of pairs of skew lines has
no fixed points.

Example 4.5. If X0 ⊂ P4 is a union of two planes meeting at a point p, then X0 is not locally Cohen-
Macaulay at p and SingN = {p}. We can take s < s(X0) = 2 small enough that P≤s = 0 to conclude
that Fs = {p} and p is contained in every surface Y ∈L (X0).
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FIXED LOCI IN EVEN LINKAGE CLASSES 10

5. Integral subschemes in an even linkage class

Fix an even linkage class L of codimension two subschemes in Pn with X0 minimal. We give a
complete answer to Question 1.1 if X0 may be taken integral; otherwise we use Corollary 4.2 and
results from [26] to give necessary conditions which we show to be sharp by example. First we correct
a statement from [26].

Theorem 5.1. Let X ,Y ∈L such that X is integral and X < Y . Then HY contains an integral element
if and only if

(a) θY is connected about [s(X0)+hY , t(X0)+hY −1].
(b) s(Y )≤ e(X0)+n+1+hY .

Proof. This is [26, 3.6] with two fixes. Firstly X < Y replaces X ≤ Y . The logic gap came from
applying [26, 3.4] which assumes Y is not minimal. Secondly Proposition 3.4 replaces [26, 3.5] in the
proof to remove the locally Cohen-Macaulay assumption. �

Theorem 5.1 completely answers Question 1.1 when X0 is integral (see Theorem 1.2). For example,
if X0 ⊂ P3 is the image of a general high degree embedding of a smooth connected curve, then
s(X0) > e(X0)+ 4 [16, 3.1] and X0 is the unique minimal element in its even linkage class L by
Corollary 4.3. Therefore Theorem 1.2 describes all the cohomology-preserving deformation classes in
L containing an integral curve.

Example 5.2. A general rational quintic curve X0 ⊂ P3 has maximal rank by [2], so s(X0) = 3 and
e(X0) =−1, therefore X0 is minimal in its even linkage class [16, 1.8]. It is not unique because auto-
morphisms of P3 taking the line L = Z(x,y) to itself fix the Rao module M = S/(x,y,z2,zw,w2)∗(−1).
These automorphisms show that F(L ) = /0. Theorem 1.2 says that a curve Y ∈L deforms with
constant cohomology to an integral curve if and only if θY is connected about [3+ hY ,2+ hY ] and
s(Y )≤ 3+hY , but the latter condition holds for all Y ∈L by (4). Since IX0 is 4-regular, this a sharp
instance of the theorem of Gruson, Lazarsfeld and Peskine [8], which says the ideal sheaf IC of
an integral curve C of degree d is at most (d− 1) regular with equality if and only if C is rational
with a (d− 1)-secant line. The secant line can be seen here because restricting the exact sequence
0→IX0 → OP3 → OX0 → 0 to L = Z(x,y) shows that L is a 4-secant line to X0.

When L does not have a minimal integral element, we reduce Question 1.1 to finding minimal
integral elements with the following.

Proposition 5.3. Let X ∈L be a non-minimal integral element and suppose X ≤Y . Then the following
are equivalent.

(a) The deformation space HY has an integral element.
(b) θY is connected about [s(X0)+hY , t(X0)+hY −1].

Proof. If Y = X , then (a) is true because X is integral and [26, Theorem 3.4 (a)] says (b) is true, so
assume X < Y . Then the function ηX ,Y (l) = ∆nh0((IY (l))− h0(IX(hY − hZ + l))) is non-negative
[26, Proposition 1.12 (c)], so by the relative version of (4), the minimal hypersurface degree is
s(Y ) = min{s(X)+hY −hX , infηX ,Y} ≤ s(X)+hY −hX . Now s(X)≤ e(X0)+n+1+hX follows from
[26, Theorem 3.4 (b)] because X is integral and non-minimal. Thus s(Y ) ≤ e(X0)+ n+ 1+ hY , so
condition (b) of Theorem 5.1 holds for all Y ≥ X and the equivalence follows. �
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FIXED LOCI IN EVEN LINKAGE CLASSES 11

In view of Proposition 5.3, the set of all deformation classes containing an integral element is
determined by the minimal integral elements. Since we have seen no counterexample, we ask the
following natural question:

Question 5.4. Up to cohomology preserving deformation, are there at most finitely many minimal
integral elements in L ?

Propositions 5.3 (b) and Corollary 4.2 suggest two places to look for minimal integral candidates
when X0 cannot be chosen integral.

Definition 5.5. Let L be an even linkage class of codimension two subschemes in Pn with X0 minimal
and set f = min{s : codimFs = 2 or s = s(X0)} as in Corollary 4.2. The first candidate for non-minimal
integral element is the scheme X1 is defined up to deformation in L by

(9) X0
s(X0),s(X0)− f−→ X1.

Remark 5.6. We make two remarks.
(a) X1 is minimal if and only if s(X0)− f = 0, i.e. f = s(X0).
(b) A minimal element X0 is linked to a minimal element X∗0 in the dual linkage class by hypersur-

faces of degrees s(X0) and t(X0) [22, 3.30], so we can define X1 by direct link

(10) X∗0
s(X0),t(X0)+s(X0)− f∼ X1.

Definition 5.5 is justified by Theorem 1.3 from the introduction, which we now prove:

Proof. If X ∈L is non-minimal and integral, then s(X) ≤ f + hY by Corollary 4.2. From (4) and
connectedness of ηX in degrees < s(X0)+ hX , we see that ηX(l) ≥ 1 for f + hX ≤ l < s(X0)+ hX .
On the other hand, from (1) and (9) we compute that ηX1(l) = 1 for f + hX1 ≤ l < s(X0)+ hX1 and
ηX1(l) = 0 otherwise, so ηX1(l−hX1)≤ ηX(l−hX) for all l ∈ Z and therefore we have the inequality
X1 ≤ X by [26, 1.12 (c)], proving (1).

If X may be taken integral, then (a) and (b) follow from Proposition 5.3 and part (1). Conversely if
X1 integral and conditions (a) and (b) hold, we need to show X can be taken integral. We may assume
X1 < X . If X1 is non-minimal, then Proposition 5.3 shows that HX contains an integral element. If X1 is
minimal, then by Remark 5.6(a) we have f = s(X0) and s(X0)≤ e(X0)+n+1 by Corollary 4.3 via the
contrapositive. It follows that s(X)≤ e(X0)+n+1+hX and we can apply Theorem 5.1 to finish. �

Example 5.7. We give an example where X1 is not minimal, but may be taken integral in Theorem 1.3.
Let X0 be the general rational quintic from Example 5.2 and let Y0 be a minimal curve in the dual even
linkage class L ∗, linked to X0 by two cubic surfaces. The Rao module M(Y0)∼= S/(x,y,z2,zw,w2) has
minimal resolution of form

0→ S(−5)2→ S(−4)7→ S(−2)⊕S(−3)8 σ→ S(−1)2⊕S(−2)3 π→ S→M→ 0.

If σ̃ is the sheafification of σ , then N0 = Ker σ̃ is the indecomposable rank four bundle which
corresponds to L ∗ by Rao’s correspondence [31]. From the construction of minimal curves due to
Martin-Deschamps and Perrin [18, IV] there is an exact sequence

0→⊕(−2)⊕O(−3)2→N0→IY0 → 0
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FIXED LOCI IN EVEN LINKAGE CLASSES 12

for any minimal Y0 ∈L . The map π is given by (x,y,z2,zw,w2) and σ is given by

σ =


y z2 zw w2 0 0 0 0 0
−x 0 0 0 z2 zw w2 0 0
0 −x 0 0 −y 0 0 w 0
0 0 −x 0 0 −y 0 −z w2

0 0 0 −x 0 0 −y 0 −z

 .

Looking at the first column, σ̃ |O(−2) drops rank along L = Z(x,y), so F2 = L. Here s(X0) = t(X0) = 3

and f = 2 in Definition 5.5, so the first candidate for non-minimal integral element is X1
3,4∼ X0 via (12).

Using the cone construction and the N -type resolution for Y0 above, we obtain an E -type resolution
for X0 of the form

0→ E0→ O(−3)4⊕O(−4)→IX0 → 0.

Now X0 is a generically Cartier divisor on a cubic surface S [26, 3.1] and IX0,S(4) is globally generated,
so by Lemma 3.1 we may take X1 integral. By Theorem 1.3 the integral curves in L ∗ are cohomology
preserving deformations of Y ≥ X1 with θY connected about [3+hY ,2+hY ].

Remark 5.8. In the next section we will see many examples in which θX = 0 =⇒ X is not integral
for the reason shown in Lemma 2.3. In this case we define a second candidate for minimal integral
element X2 defined up to deformation in L by

(11) X0
t(X0),t(X0)− f−→ X2

or equivalently through direct linkage by

(12) X∗0
t(X0),t(X0)+s(X0)− f∼ X2.

With this definition we can use the methods above to prove a version of Theorem 1.3 for subschemes
X ∈L with θX 6= 0:

(1) If X is integral, then X ≥ X2.
(2) Conversely, if X2 is integral, then HX contains an integral element if and only if

(a) X2 ≤ X .
(b) θX is connected about [s(X0)+hX , t(X0)+hX −1].

This will be useful for many examples in the following section.

Example 5.9. Let Lk be the even linkage class with minimal element X0 consisting of k > 2 skew
lines on a smooth quadric Q ⊂ P3, so X0 has type (k,0) ∈ Z⊕Z ∼= PicQ. The N -type resolution
for X0 has the form 0→ O(−2)k→N →IX0 → 0 with N a rank k+1 bundle. The dual minimal

curve X∗0 is a divisor of type (0,k) on Q and we have s(X0) = 2, t(X0) = k, f = 2 so that X∗0
2,k∼ X1 and

X∗0
k,k∼ X2. Here X1 = X0 cannot be taken integral, but the curves Y > X1 with θY = 0 have type (k+ l, l)

with l ≥ 1 on Q and can be taken smooth. Since IX∗0
(k) is globally generated, X2 can be taken to be a

smooth connected curve of degree k2− k. Thus HY contains an integral element if and only if X1 < Y
and θY is connected about [2+hY ,k−1+hY ].
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FIXED LOCI IN EVEN LINKAGE CLASSES 13

6. The even linkage class of a complete intersection module

We study the even linkage class L of curves in P3 corresponding to Rao module

(13) M = S/( f1, f2, f3, f4),ni = deg fi,n1 ≤ n2 ≤ n3 ≤ n4, fi a regular sequence in S,

where S is the homogeneous coordinate ring of Pn. We compute the fixed loci Fs and determine
which deformation classes HX ⊂L contain integral curves. Comparing with Martin-Deschamps and
Perrin’s results on smooth connected curves [19, V, 2.6], we find that typically when the fixed loci are
non-empty, many integral curves are not smoothable within L . We assume char k = 0, as it affects the
answers both for smooth connected curves and for integral curves (Remark 6.11).

6.1. Minimal curves and fixed loci. The Koszul resolution for M has form

(14) 0→ S(−ν)→
⊕

S(−ν +ni)
σ3→
⊕
i 6= j

S(−ni−n j)
σ2→
⊕

S(−ni)
σ1→ S→M→ 0

where ν = ∑ni, σ1 = ( f1, f2, f3, f4) and σ2 is given by the Koszul relations

σ2 =


f2 f3 f4 0 0 0
− f1 0 0 f3 f4 0

0 − f1 0 − f2 0 f4
0 0 − f1 0 − f2 − f3

 .

Martin-Deschamps and Perrin [18, IV, 6.7] prove that if N = Kerσ1 and N = Ñ, then a minimal curve
X0 for the even linkage class L (M) has N -type resolution

(15) 0→ O(−n1−n2)⊕O(−µ)
ϕ→N →IX0(h0)→ 0

and E -type resolution (note E = N ∨(−ν) by self-duality of the Koszul complex)

(16) 0→ E → O(−n1−n3)⊕O(−µ
′)⊕O(−n2−n4)⊕O(−n3−n4)→IX0(h0)→ 0

where µ = sup{n1 +n4,n2 +n3}, µ ′ = inf{n1 +n4,n2 +n3} and h0 = µ−n3−n4.
They also construct explicit minimal curves X0 [18, IV, 6.8]: general polynomials f ,g of degrees

µ−n1−n4,µ−n2−n3 give rise to minimal X0 ∈L with ideal

(17) IX0 = ( f1 f2,g f 2
2 , f f 2

1 , f f1 f4−g f2 f3).

Since deg f = 0 or degg = 0, one of f or g is a nonzero constant, leading to three possibilities.
Let D be the locally Cohen-Macaulay double structure on F = V ( f1, f2) contained in the surface
V ( f f1 f4−g f2 f3). Then

(1) If deg f = degg = 0, then X0 = D.
(2) if deg f = 0 and degg > 0, then X0 = D∪V (g, f1).
(3) if degg = 0 and deg f > 0, then X0 = D∪V ( f , f2).

From this one reads off numerical invariants [18, IV, 6.7] for X0:

(18) degX0 = µ(n1 +n2)−n1n3−n2n4, s(X0) = n1 +n3 +h0, t(X0) = n2 +n4 +h0.

Lemma 6.1. Let f = inf{s : codimFs = 2 or s = s(X0)} as in Prop. 4.2.

(a) If n2 = n3, then f = s(X0) and Fs is empty for all s < s(X0).
(b) If n2 < n3, then f = n1 +n2 +h0 and Ff =V ( f1, f2)
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FIXED LOCI IN EVEN LINKAGE CLASSES 14

Proof. We can see from equations (18) that s(X0) = n1 + n3 + h0 and resolution (15) shows that
P0 =O(−n1−n2−h0)⊕O(−µ−h0). If n2 = n3, then P≤s

0 = 0 for s < s(X0), so that Qs =N0 and
Fs is empty. If n2 < n3, then P≤s

0 = O(−n1−n2−h0) for s = n1 +n2 +h0 and the map to N (−h0)
is given by the first column of matrix σ2. Since the sequence 0→N →⊕O(−ni)→O→ 0 is locally
split, the map P≤s

0 →N drops rank at x iff the composite map P≤s
0 →⊕O(−ni) drops rank, which

occurs precisely for x ∈V ( f1, f2) in view of the first column of the matrix σ2. �

Remark 6.2. Taking intersections over the explicit examples above and combining with Lemma 6.1,
one can compute the full fixed locus F(L ):

(1) If n2 = n3 = n4, then F(L ) = /0.
(2) If n2 = n3 < n4, then F(L ) =V ( f1, f2, f3).
(3) If n2 < n3, then F(L ) =V ( f1, f2).

In particular, none of the Fs from Lemma 6.1 are equal to F(L ) when n2 = n3 < n4.

To find the deformation classes of integral curves, we need more information about X0.

Proposition 6.3. Let L = L (M) with general minimal curve X0.

(a) If n1 = n2 < n3 = n4, then X0 is a double structure on V ( f1, f2) having ideal of the form
( f 2

1 , f1 f2, f 2
2 , f1F− f2G), with F,G general linear combinations of f3, f4.

(b) X0 lies on an integral surface of degree s(X0) ⇐⇒ n1 = n2 = n3 = n4.

Proof. Part (a). Suppose n1 = n2 < n3 = n4. The map ϕ : O(−n1−n2)⊕O(−µ) = P0→N drops
rank where the composite map ϕ : O(−n1−n2)⊕O(−µ)→⊕O(−ni−n j) drops rank because N is
a subbundle of ⊕O(−ni−n j). When n1 = n2 < n3 = n4, the summand O(−n1−n2) only has nonzero
maps to the first column. The summand O(−µ) only has nonzero maps to the first five columns and
we can take the coefficient to the first column to be zero without changing the dependency locus. If the
remaining coefficients are a,b,c,d for the middle 4 columns, this locus is given by the 2×2 minors of
the matrix 

f2 a f3 +b f4
− f1 c f3 +d f4

0 −a f1− c f2
0 −b f1−d f2


leading to the ideal IX0 = ( f 2

1 , f1 f2, f 2
2 , f2(c f3 +d f4)+ f1(a f3 +b f4)) if ad−bc 6= 0. The generator

degrees agree with the degrees of the minimal generators from (16), so this is the total ideal, which
gives a double structure as stated.

Part (b). From Resolution (16), we see that the lowest three degrees of generators for IX0 are
s(X0) = n1 +n3 +h0 ≤ µ ′+h0 ≤ t(X0) = n2 +n4 +h0, where µ ′ = min{n2 +n3,n1 +n4}. If X0 lies
on an integral surface S of degree s(X0), then µ ′+h0 = n2 +n4 +h0, since otherwise S would meet a
surface of degree µ ′+h0 < t(X0) properly, contradicting the definition of t(X0). Therefore µ ′= n2+n4,
hence n1 = n2 and n3 = n4. Part (a) shows that if n1 = n2 < n3 = n4, then the general surface of degree
s(X0) has equation a f 2

1 +b f1 f2 + c f 2
2 and is not integral, so if X0 lies on an integral surface of degree

s(X0), then all the ni must be equal.
Conversely suppose the ni are equal. Then by [19, V, 2.3] the curve X0 may be taken smooth

(after replacing fi be general linear combinations of themselves, X0 may be taken a disjoint union
V ( f1, f3)∪V ( f2, f4) of smooth curves [18, IV, 6.8]) and IX0 is generated by four equations of degree
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FIXED LOCI IN EVEN LINKAGE CLASSES 15

n1 +n3 +h0 = s(X0), hence IX0(s(X0)) is generated by global sections. Since char k = 0, this implies
that the general surface of degree s(X0) containing X0 is smooth [25, 2.7], hence integral. �

Remark 6.4. Letting the fi vary, we obtain an irreducible family of curves. In case n1 = n2 = 1, it
is the family of double lines of fixed negative genus and the closure is an irreducible component of
the Hilbert scheme [23, 1.6]. We don’t know if the closures of these families always form irreducible
components of the Hilbert scheme.

6.2. Integral curves. We determine the deformation classes HX ⊂L containing integral curves. The
case n1 6= n2 or n3 6= n4 is easy, since X0 lies on no integral surface of degree s(X0) by Prop. 6.3, hence
no curve X with θX = 0 is integral by Lemma 2.3 (b). On the other hand, the second candidate for
minimal integral curve X2 may be taken integral, so Remark 5.8 determines all integral curves. When
n1 = n2 = a≤ b = n3 = n4, we must adjust the argument because the general X2 is not connected. In
this situation we define curves C1 and C2 as the height one double links

(19) X2
a+b,1→ C1, X2

a+b+1,1→ C2.

When n1 = n2 ≤ n3 = n4 and V ( f1, f2) is superficial, Martin-Deschamps and Perrin prove that C1 and
C2 can be taken smooth and connected [19, 2.9], but below we will show they are integral whether
V ( f1, f2) is superficial or not. We conclude the following:

Theorem 6.5. Let X ∈L . Then HX contains an integral curve if and only if

(a) X2 ≤ X (resp. C1 ≤ X or C2 ≤ X if n1 = n2 = a≤ b = n3 = n4).
(b) θX is connected about [s(X0)+hX , t(X0)+hX −1].

Proof. Assuming HX contains an integral curve, the connectedness condition for θX holds by Proposi-
tion 5.3 and Remark 5.8 show that X2 ≤ X or X1 ≤ X and θX = 0. If θX = 0 and X is integral, then
X lies on an integral surface of degree s(X0) [26, 3.1], but this is only possible if all the ni are equal
by Lemma 2.3 and Proposition 6.3, in which case X1 = X2, so we conclude that X2 ≤ X . In case
n1 = n2,n3 = n4, the curve X2 satisfies h1(IX2) = 1, so X2 cannot be integral and since θX 6= 0 by the
argument above, condition (b) implies θX(2a+hX)> 0 (or in case the ni are equal, η(2a+hX)> 0:
in either case C1 ≤ X) or θX(2a+hX −1)> 0 (so that C2 ≤ X).

To prove the converse, it suffices in view of Proposition 5.3 to show that X2 may be taken integral if
n1 6= n2 or n3 6= n4 and that C1 and C2 may be taken integral if n1 = n2 = a < b = n3 = n4.

First suppose n1 6= n2 or n3 6= n4. Looking at ideal (17) we see that X0 is a generic local complete
intersection, since away from V ( f1, f2) it is a complete intersection or empty and at points along
V ( f1, f2) where f g f4 6= 0 the ideal (17) is locally generated by g f 2

2 and f f1 f4−g f2 f3. The E -type
resolution (16) gives a surjection

S(−n1−n3−h0)⊕S(−µ
′−h0)⊕S(−n2−n4−h0)⊕S(−n3−n4)→ IX0 → 0

where µ ′ = inf{n1 +n4,n2 +n3}. The degrees of the generators satisfy

n1 +n2 +h0 ≤ µ
′+h0 ≤ n2 +n4 +h0 ≤ n3 +n4 +h0

and one of the first two inequalities is strict because n1 < n2 or n3 < n4. From (18) and Proposition 6.1
(b) we have t(X0) = n2 +n4 +h0 and s(X0)+ t(X0)− f = n3 +n4 +h0, so X2 may be taken integral by
Proposition 3.3.
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FIXED LOCI IN EVEN LINKAGE CLASSES 16

Now suppose n1 = n2 = a < b = n3 = n4. Then s(X0) = t(X0) = 2a so that X2 can be taken as a basic

double link X0
2a,b−a→ X2 and we will show that C1 and C2 may be taken integral. Up to deformation

there are direct links C1
2a+1,a+b∼ D

2a,a+b∼ X2
2a,a+b∼ X0 and if we think of these double links taking

place on a surface of degree a+b, we may take X0
2a+1,a+b∼ C1. Since X0 is a generic local complete

intersection curve, h0(IX0(2a)) 6= 0 and IX0(a+ b) is globally generated by (16), we can apply
Corollary 3.3 to take C1 integral.

Similarly C2
2a+1,a+b+1∼ D

2a,a+b+1∼ X2
2a,a+b∼ X0 up to deformation and X0

2a,1→ D. Since X0 is a generic
local complete intersection, then so is the typical basic double link D and since IX0(a+b) is globally
generated, so is ID(a+b+1) by resolution (1). Furthermore h0(ID(2a)) 6= 0, so by Corollary 3.3
we may take C2 integral.

�

6.3. Comparison to smooth connected curves. Martin-Deschamps and Perrin completely described
the deformation classes in L containing a smooth curve [19, V, 2.6]. Their methods are based on vector
bundle constructions, so their solution is stated in terms of free resolutions. We translate Theorem 6.5
into the same language to compare the two results. In particular, there are many examples of integral
curves that cannot be smoothed in their even linkage classes. The simplest example was discovered by
Hartshorne [13], an integral curve which cannot be smoothed within the Hilbert scheme.

Each curve C ∈L has an N -type resolution of the form

(20) 0→P
u→N ⊕S →IC(h)→ 0

with N is as in (15) so that hC = h−h0, P =⊕O(−n)p(n) and S =⊕O(−n)s(n). Taking u general,
we cancel off redundant summands to assume p(n)s(n) = 0 for all n. Set

(21) a =

{
n2 +n4 if V ( f1, f2) is superficial
n3 +n4 otherwise

and define ql by ⊕O(−n)ql(n) = O(µ)⊕O(−a). With this preamble, Martin-Deschamps and Perrin
describe all classes in L having a smooth curve C [19, V, 2.6]:

Theorem 6.6. Let C ∈L with notations above with c = supP .

(1) If C is smooth and connected, then
(a) p](n)≤ s](n)+q]l (n) for all n ∈ Z.
(b) If n < n1 +n2, then p](n)≤ sup(s](n)−2,0).
(c) If n1 +n2 ≤ n < n1 +n3, then p](n)≤ sup(s](n)−1,0) except in the paradoxal case: if

n2 < n3, p](n1 +n2) = s](n1 +n2) = 1, p(n1 +n2) = 1 (hence there is m < n1 +n2 with
s(m) = 1), V ( f1, f2) is superficial and c≥ n3 +n4.

(d) If a≤ n < c, then p](n)≤ s](n)+1
(2) Conversely, if (1) holds, then there is a sequence (20) with C a smooth curve. Furthermore, C

is connected unless n1 = n2,n3 = n4, S = 0 and P = O(−µ)2.

This result is remarkably compactly presented, perhaps difficult to grasp at a glance. We translate
Theorem 6.5 to the same notation for comparison. The curve X2 is obtained from X0 as a double link

X0
t(X0),t(X0)− f→ X2. Combining (15) and (1) we find an N -type resolution for X1 of the form

(22) 0→ O(−µ)⊕O(−t +h0)→N →IX2(h0 + t− f )→ 0
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FIXED LOCI IN EVEN LINKAGE CLASSES 17

with t = t(X0)= n2+n4+h0 and f = n1+n2+h0, which we used to cancel the summands O(−n1−n2)

on the left and O(− f −h0) in the middle, so we define q by ⊕O(−n)q(n) = O(−µ)⊕O(−n2−n4).
Similarly, in view of (15) we define p0 by P0 =⊕O(−n)p0(n) = O(−n1−n2)⊕O(−µ). For a curve
C ∈L , we compare sequences (15) and (20) to arrive at the key connection

(23) ηC(n+h) = s](n)− p](n)+ p]0(n)

where hC = h− h0 is the height of C. In particular, ηX1(l + h0 + hX2) = −q](l) + p]0(l) = 1 for
n1 +n2 ≤ l < n2 +n4 and 0 otherwise.

Corollary 6.7. Let C ∈L . Then HC contains an integral curve if and only if

(a) p](n)≤ s](n)+q](n) for all n ∈ Z; if n1 = n2 = a≤ b = n3 = n4, then the inequality is strict
for n = 2a or n = 2a−1.

(b) If n < n1 +n2, then p](n)≤ sup(s](n)−2,0).
(c) If n1 + n2 ≤ n < n1 + n3, then p](n) ≤ sup(s](n)− 1,0) except when p](n) = s](n) = 1 and

p(n1 +n2) = 1.
(d) If n2 +n4 ≤ n < c, then p](n)≤ s](n)+1

Proof. Condition (a) says that ηC(n+hC)≥ ηX1(n+hX2) for all n ∈ Z, which is equivalent to X2 ≤C
[26, 1.8 and 1.11 (a)]. When n1 = n2 = a≤ b = n3 = n4 the strict inequality gives C1 ≤C or C2 ≤C.
Therefore condition (1) of Corollary 6.7 and condition (a) of Theorem 6.5 are equivalent. Here we
have θC(n+h) = ηC(n+h)≥ ηX1(n+hX1) = 1 for

s(X0)+hC = n1 +n3 +h0 +hC ≤ n+h < n2 +n4 +h0 +hC = t(X0)+hC,

so Condition (b) of Theorem 6.5, connectedness of θC about [s(X0)+hC, t(X0)+hC−1], is equivalent to
(A) connectedness of θC in degrees < s(X0)+hC and (B) connectedness of θC in degrees ≥ t(X0)+hC.
We show these are equivalent to (b)-(d) above.

Condition (B) is equivalent to condition (d), which says that θC(l) = ηC(l) is positive until is
becomes zero for l ≥ t(X0)+hC. Bearing in mind that p0(n) = 0 for n < n1 +n2 and p0(n) = 1 for
n1 +n2 ≤ n < n1 +n3, conditions (b) and (c) are equivalent to saying that for l < n1 +n2 +h0 +hC,
ηC(l) is non-decreasing until it possibly reaches a value ≥ 2, after which it remains ≥ 2: in view of the
definition of θC, this is equivalent to connectedness of θC in degrees < n1 +n3 +h0 +hC = s(X0)+hC.
The special case in condition (c) handles the scenario where s](n) increases to 1 at some point
n < n1 +n2 and p](n) increases to 1 at n = n1 +n2. �

It follows that when the fixed locus is empty, every integral curve is smoothable:

Corollary 6.8. Assume n2 = n3 and let C ∈L . Then HC contains a smooth connected curve ⇐⇒ HC
contains an integral curve.

Proof. (1)⇒ (2) holds because every smooth connected curve is integral. Conversely, if HC contains
an integral curve, then condition (c) in Theorem 6.6 holds vacuously and since n2 + n4 ≤ a, so do
conditions (a), (b) and (d). �

Example 6.9. Taking n1 = n1 = 1 < b = n3 = n4, the minimal curve X0 is a double line of genus −b
as in Remark 6.4. When b = 2, all integral curves are smoothable because in comparing Theorem
6.6 and Corollary 6.7 we have n2 +n4 = a,q = ql so conditions (a), (b), (d) line up almost exactly,
meanwhile condition turns out to be the same because it need only be checked for n = n1 +n2, when
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FIXED LOCI IN EVEN LINKAGE CLASSES 18

they read the same. However when b = 3, there are integral curves not smoothable in L , such as the
curve Z from Example 2.2. Using N0 = N (2), Sequence (5) becomes

0→ O(−2)⊕O(−4)⊕O(−5)→N ⊕O(−1)→IZ(2)→ 0

which lines up with Sequence (20), so we can compute the functions s], p],q]l and q]. By Lemma 6.1
we have f = 0 and the fixed locus is a line, which is superficial, so a = 4 and q = ql , leading to

n 0 1 2 3 4 5 6
p] 0 0 1 1 2 3 3
s] 0 1 1 1 1 1 1
p]0 0 0 1 1 2 2 2
q]l 0 0 0 0 2 2 2
q] 0 0 0 0 2 2 2

Looking at the values of s], p], p]0 and formula (23), we see consistency with the calculation of ηZ from
Example 2.2. It’s easy to check that all conditions of Corollary 6.7 hold, so Z deforms to an integral
curve. When we look at Theorem 6.6 we see that conditions (a), (b) and (d) hold, but (c) fails because
5 = c < 6 = n3 +n4, so Z is not smoothable in L . The curve Y from Example 2.2 is smoothable, it’s
the curve C2 from the proof of Theorem 6.5, it also appears in [19, V, 2.9]. One way to see that Z is

not smoothable is to show that the cubic surface S used for a double link Y
3,1→ Z necessarily contains a

double line, specifically L(2) ⊂ S, and this forces Z to have some nodes along L [21, 8.2.4]. Hartshorne
showed more strongly that Z is not only unsmoothable in L , but in the entire Hilbert scheme [13].

Question 6.10. For an even linkage class L of curves in P3 with empty fixed loci Fs, is every integral
curve smoothable in L ?

Example 6.11. Theorems 6.5 and 6.6 fail when char k = p > 0. Take fi = xp
i−1 for 1≤ i≤ 4 so that

M = S/(xp
0 ,x

p
1 ,x

p
2 ,x

p
3). Here P0 = O(−2p)2 and the general map ϕ : P0→N is given by taking a

linear combination of two columns of matrix σ2. Since (x+ y)p = xp + yp, the 2× 2 minors of the
resulting 4×2 matrix have the form Lp

1Lp
2−Lp

3Lp
4 for linear forms Li and the total ideal IX0 is generated

by such. The partial derivative criterion shows that these surfaces are generically non-reduced, hence
not integral. In particular, the curve C0 = X0 is non-reduced, while Theorem 6.6 says it is smooth

and disconnected when char k = 0. Furthermore, the double link X0
2p,1→ C1 lies on only non-reduced

surfaces of minimal degree, hence C1 is not integral and Theorem 6.5 fails.
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[16] R. Lazarsfeld and A. P. Rao, Linkage of General Curves of Large Degree, in Algebraic Geometry - open problems,

Proc. Conf., (Ravello/Italy 1982), 267–289, Lecture Notes in Mathematics 997, Springer-Verlag, 1983.
[17] R. Maggioni and A. Ragusa, The Hilbert function of generic plane sections of curves of P3, Invent. Math. 91 (1988)

253–258.
[18] M. Martin-Deschamps and D. Perrin, Sur la Classification des Courbes Gauches, Asterisque 184-185, Soc. Math. de

France, 1990.
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