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RING STRUCTURE OF INTEGER-VALUED RATIONAL FUNCTIONS

BAIAN LIU

ABSTRACT. Integer-valued rational functions are a natural generalization of integer-valued polynomials.
Given a domain D, the collection of all integer-valued rational functions over D forms a ring extension
IntR(D) of D. For a valuation domain V , we characterize when IntR(V ) is a Prüfer domain and when
IntR(V ) is a Bézout domain. We also extend the classification of when IntR(D) is a Prüfer domain.

1. Introduction

Integer-valued polynomials appear in many areas of mathematics, including Hilbert polynomials of
polynomial rings and interpolation formulas. A natural generalization of integer-valued polynomials is
integer-valued rational functions. One of the first analyses of integer-valued rational functions was
done by Kochen [Koc69]. Kochen uses rings of integer-valued rational functions to help determine
when Diophantine equations have an integral solution over a p-adically closed field.

We are interested in studying sets of integer-valued rational functions over a ring as a ring itself. We
will be investigating the ring-theoretic properties of these rings of integer-valued rational functions on
their own and in relation to the ring over which they are defined.

We start with a domain D. Then we want to define the ring of integer-valued rational functions
IntR(D) over D, as well as some notions to help us investigate IntR(D).

Definition 1.1. Let D be a domain and K its field of fractions. We define the ring of integer-valued
rational functions over D to be

IntR(D) = {ϕ ∈ K(x) | ϕ(D)⊆ D}.
Remark 1.2. The set IntR(D) is in fact a ring which is also closed under composition.

Requiring ϕ(D)⊆ D means that ϕ cannot have any poles in D. Since a rational function only has
finitely many poles, we many choose to ignore these finitely many elements. This turns out to not
change the set of rational functions we are considering, since if D is not a field, a rational function
ϕ ∈ K(x) such that ϕ(d) ∈ D for all but finitely many d ∈ D is in IntR(D) [CC97, p. 260].

We can also obtain a ring by taking the collection of all rational functions that are integer-valued on
some subset of the field of fractions. These rings can help give a more nuanced description of what
properties of D lead to certain properties of IntR(D).

Definition 1.3. Take D to be a domain and K its field of fractions. Let E be some subset of K. We can
more generally define the ring of integer-valued rational functions on E over D to be

IntR(E,D) = {ϕ ∈ K(x) | ϕ(E)⊆ D}.
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RING STRUCTURE OF INTEGER-VALUED RATIONAL FUNCTIONS 2

In particular, for the ring IntR(K,D), we may also choose to ignore finitely many values in determin-
ing if a rational function is integer-valued on K.

Proposition 1.4. Let D be a domain that is not a field and K its field of fractions. If ϕ ∈ K(x) is such
that ϕ(r) ∈ D for almost all r ∈ K, then ϕ ∈ IntR(K,D).

Proof. Let b ∈ D such that b ̸= 0. Define ψb(x) = ϕ
( x

b

)
. By assumption, ψb is almost integer-valued

on D, so ψb is integer-valued on D. Now let d ∈ K. We can write d = a
b for some a,b ∈ D with b ̸= 0.

Then ϕ(d) = ψb(a) ∈ D. Thus, ϕ ∈ IntR(K,D). □

The definition of rings of integer-valued rational functions appears to be very similar to that of rings
of integer-valued polynomials. Despite this, we will see that the behavior of rings of integer-valued
rational functions can be vastly different from that of rings of integer-valued polynomials. For example,
rings of integer-valued rational functions are not as sensitive to infinite residue fields. In the case of
integer-valued polynomials, if D is a domain with infinite residue fields, then Int(D) = D[x] [CC97, p.
10].

One notion that marks a difference between integer-valued rational functions and polynomials is
the notion of unit-valued polynomials. Take D to be a domain. Because the inverse of a nonconstant
polynomial is not a polynomial, unit-valued polynomials are not units in Int(D). However, the inverse
of a polynomial is a rational function, so unit-valued polynomials are units in IntR(D).

Definition 1.5. Let D be a domain and let K be the field of fractions of D. Then a polynomial f ∈ D[x]
is unit-valued over D if f (D)⊆ D×. We will denote the set of all unit-valued polynomials by

T = { f ∈ D[x] | f (D)⊆ D×}.

Remark 1.6. Let Int(D) denote the ring of unit-valued polynomials of D. We can see that T is a
multiplicative subset of Int(D) and we have the containment

T−1 Int(D)⊆ IntR(D).

The containment T−1 Int(D)⊆ IntR(D) can be strict (see Example 1.13), so unit-valued polynomials
do not explain all of the differences between Int(D) and IntR(D). Nevertheless, unit-valued polynomials
are a useful tool for describing some of the structure of IntR(D). In addition, unit-valued polynomials
over a domain D are closely linked to the residue fields of D, so residue fields of D can help describe
the structure of IntR(D).

Proposition 1.7. Let D be a local domain with maximal ideal m. Then f ∈ D[x] is unit-valued if and
only if f mod m has no roots in D/m.

Proof. We have that f ∈ D[x] is unit-valued if and only if f (d) /∈m for any d ∈ D, which happens if
and only if f mod m has no roots in D/m.

□

Corollary 1.8. Let D be a domain. Then f ∈ D[x] is unit-valued if and only if for every maximal ideal
m of D, the polynomial f mod m has no roots in D/m.
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Proof. If f is unit-valued over D, then f is valued in D\m for each maximal ideal m, so f mod m
has no roots in D/m. Conversely, if f is unit-valued over Dm for every maximal ideal m of D, then
f (a), 1

f (a) ∈ D for each a ∈ D, which means f is unit-valued over D. □

There exist domains D such that IntR(D) = Int(D). In other words, all of the integer-valued rational
functions over D are polynomials. This means analyzing IntR(D) is no different than analyzing Int(D),
so we are only interested in domains D such that IntR(D) ̸= Int(D). One observation we make is that if
D is a domain such that there exists a nonconstant unit-valued polynomial f , then 1

f ∈ IntR(D)\ Int(D).
A ring with such a property is called a non-D-ring.

Definition 1.9. Let D be a domain. We call D a non-D-ring if there is a nonconstant unit-valued
polynomial f ∈ D[x].

Example 1.10. Let D be a domain with a nonzero Jacobson radical, such as a semi-local domain or a
local domain. Then D is a non-D-ring. To see this, take d to be a nonzero element in the Jacobson
radical. Then dx+1 is a nonconstant unit-valued polynomial.

The Jacobson radical of D need not to be nonzero for D to be a non-D-ring, as seen in the following
example.

Example 1.11. [Lop88, Example 1.11] The domain D = Z
[

1
p

∣∣∣ p ≡ 1,2 (mod 4), p is a prime
]

has

unit-valued polynomial x2 +1 and is therefore a non-D-ring.

The property of being a non-D-ring turns out to be exactly the one we want to consider in order to
study rings of integer-valued rational functions.

Proposition 1.12. [GM76, Proposition 1] Let D be a domain. Then D is a non-D-ring if and only if
IntR(D) ̸= Int(D).

In general, the ring IntR(D) is not the localization of Int(D) by unit-valued polynomials. The
following is an example of a domain D such that IntR(D) ̸= T−1 Int(D).

Example 1.13. Let V be a valuation domain with an infinite residue field and a principal maximal
ideal, generated by some t ∈V . Then we claim that ϕ(x) := t

x2+t ∈ IntR(V )\T−1 Int(V ).
Let v be the valuation associated with V . Take d ∈ V . If v(d) = 0, then v(ϕ(d)) = v(t) ≥ 0. If

v(d)> 0, then v(ϕ(d)) = 0. Thus, ϕ ∈ IntR(V ).
Now suppose that ϕ = f

g , where f ∈ Int(V ) and g ∈ T . Since V is local with infinite residue field,
we have Int(V ) =V [x]. Then we obtain

g =
x2 + t

t
· f .

Let d ∈V such that v(d) = 0. Evaluate at x = d to get g(d) = d2+t
t · f (d). We see that v( f (d)) = v(t),

so f (d) = 0 mod (t). Since V/(t) is infinite, we must have that f (x) mod (t) is the zero polynomial.
However, evaluating x = 0, we get that g(0) = f (0), so f (0) is a unit and f (x) mod (t) cannot be the
zero polynomial, a contradiction. Thus, ϕ /∈ T−1 Int(V ).
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We can study the structure of IntR(E,D) via its ideals. In particular, we can analyze its prime and
maximal ideals. Since IntR(E,D) consists of functions valued in D, we can define some of the ideals
of IntR(E,D) via ideals of D. We call these pointed ideals.

Definition 1.14. Let D be a domain with field of fractions K. Take E to be a subset of K. Also let I be
an ideal of D and a ∈ E. Then define

II,a = {ϕ ∈ IntR(E,D) | ϕ(a) ∈ I}.
Ideals of IntR(E,D) this form are called pointed ideals. If I is a prime ideal p of D, we use the notation
Pp,a = Ip,a and call these pointed prime ideal.

If m is a maximal ideal of D, then we use the notation Mm,a for Pm,a. We call ideals of IntR(E,D)
of this form pointed maximal ideals.

Remark 1.15. The notation PI,a does not indicate the ring D and subset E, so D and E are understood
from context.

Note that if p is a prime ideal of D, then Pp,a is a prime ideal of IntR(E,D), so it is justified to call
Pp,a a pointed prime ideal. Moreover, the pointed maximal ideal Mm,a is indeed a maximal ideal of
IntR(E,D).

Proposition 1.16. Let D be a domain and E a subset of the field of fractions. If p is a prime ideal of D,
then for any a ∈ E, we have IntR(E,D)/Pp,α

∼= D/p.

Proof. Consider the map IntR(E,D)→ D/p given by ϕ 7→ ϕ(a) mod p. This map is surjective since
the constant functions are in IntR(E,D). Furthermore, the kernel of this map are rational functions
in IntR(E,D) such that their evaluation at a modulo p is 0, so the kernel is exactly Pp,α . Thus,
IntR(E,D)/Pp,α

∼= D/p. □

Remark 1.17. In particular, for any maximal ideal m of D, we have IntR(E,D)/Mm,a ∼=D/m, implying
that Mm,a is a maximal ideal in IntR(E,D).

In general, the pointed ideals of IntR(E,D) are not sufficient to describe all of the ideals of IntR(E,D).
Also, in general, the pointed prime ideals do not describe all of the prime ideals either, and even the
pointed maximal ideals do not describe all of the maximal ideals in general. However, we can use
ultrafilters to describe more of the ideals. We first give the definition of an ultrafilter.

Definition 1.18. Let S be a set. An ultrafilter U on S is a set of subsets of S such that
• /0 /∈ U ,
• if A ⊆ B ⊆ S and A ∈ U , then B ∈ U ,
• if A,B ∈ U , then A∩B ∈ U ,
• if A ⊆ S, then A ∈ U or S\A ∈ U .

Fix an element s ∈ S. The collection of all subsets of S containing s is an ultrafilter. We call
ultrafilters of this form principal and non-principal otherwise.

Remark 1.19. If S is an infinite set, there exist non-principal ultrafilters on S by Zorn’s Lemma.

Now we use ultrafilters to take ultrafilter limits of a set of prime ideals.
We can define a prime ideal from a collection of prime ideals using ultrafilters in a more general

setting. The general construction does not limit us to rings of integer-valued rational functions.
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RING STRUCTURE OF INTEGER-VALUED RATIONAL FUNCTIONS 5

Definition 1.20. Let R be a commutative ring and {pλ}λ∈Λ a subset of Spec(R). Consider an element
a ∈ R. The characteristic set of a with respect to {pλ} is defined as

Φa := {pλ | a ∈ pλ}.

Take U to be an ultrafilter of {pλ}. We define the ultrafilter limit of {pλ} with respect to U as

lim
U

pλ := {a ∈ R | Φa ∈ U }.

Remark 1.21. Since any ultrafilter on {pλ} can be extended uniquely to an ultrafilter on Spec(R)
containing {pλ} and any ultrafilter on Spec(R) containing {pλ} can be obtained this way, we may
take U to be an ultrafilter of {pλ} or an ultrafilter of Spec(R) containing {pλ}.

Using the definition of an ultrafilter, we may confirm that lim
U

pλ is a prime ideal. In particular, if

we take {pλ} to be a set of pointed prime ideals of IntR(E,D), then the ultrafilter limit of {pλ} with
respect a non-principal ultrafilter can yield a prime ideal of IntR(E,D) that is not a pointed prime ideal.

For rings of integer-valued polynomials, we have S−1 Int(D)⊆ IntR(S−1D) for any multiplicative
subset S of a domain D [CC97, Proposition I.2.2]. However, for rings of integer-valued rational
functions, we don’t necessarily have inclusion of S−1 IntR(D) in IntR(S−1D) for S a multiplicative
subset of D.

Example 1.22. Let k be a field and let K = k(s, t) with a valuation v : K → Z⊕Z∪{∞} given by

v

(
∑
i, j

ai jsit j

)
= min

i, j
{(i, j)}

for each nonzero ∑i, j ai jsit j ∈ k[s, t], where each ai j ∈ k \ {0}, and extended uniquely to K. The
value group is ordered lexicographically. Let D be the associated valuation domain. Its prime
spectrum is (0) ⊊ (s,s/t,s/t2,s/t3, . . .) ⊊ (t). If S = D \ (s,s/t,s/t2,s/t3, . . .), then 1/t

x−1/t ∈ IntR(D)

but 1/t
x−1/t /∈ IntR(S−1D).

In Section 2, we discuss rings of integer-valued rational functions over valuation domains. For a
valuation domain V , we completely determine when IntR(V ) is a Prüfer domain. We also completely
determine when IntR(V ) is a Bézout domain. When IntR(V ) is not a Prüfer domain, we determine
prime ideals that are not essential.

In Section 3, we consider integer-valued rational functions over a Prüfer domain D. We give some
conditions when IntR(D) is not Prüfer and a family of Prüfer domains such that IntR(D) is Prüfer for
each domain D in this family.

2. Integer-valued rational functions over valuation domains

In this section, we let V be a valuation domain, K its field of fractions, m the maximal ideal of V , v
the associated valuation, and Γ the value group. We investigate whether IntR(V ) is a Prüfer domain or
not. Prüfer domains are of particular interest since they possess many nice properties, such as satisfying
a generalized version of the Chinese Remainder Theorem or being a generalized notion of a Dedekind
domain. Prüfer domains can also be seen as a global version of a valuation domain.
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RING STRUCTURE OF INTEGER-VALUED RATIONAL FUNCTIONS 6

Not only are valuations powerful tools that assist in analyzing the ring of integer-valued rational
function, but valuations also induce a topology that interacts well with integer-valued rational functions.
The following proof is a modification of [CC97, Proposition X.2.1].

Proposition 2.1. Let D be a domain with field of fractions K and E a subset of K. Let v : K× → Γ be
a valuation such that the induced valuation ring V contains D. Then each element of IntR(E,D) is a
continuous function from E to D with respect to the topology induced by the valuation.

Proof. Let ϕ ∈ IntR(E,D). We can write ϕ = f
g for f ,g ∈ K[x] relatively prime polynomials. Fix

a ∈ E, and let b ∈ E and ε ∈ Γ. We calculate

ϕ(b)−ϕ(a) =
f (b)
g(b)

− f (a)
g(a)

=
f (b)− f (a)

g(a)
− f (b)

g(b)
· g(b)−g(a)

g(a)
.

Since g(a) ̸= 0, we can say that v(g(a)) = γ for some γ ∈ Γ. Let δ ∈ Γ. Since f and g are continuous
with respect to the topology induced by the valuation, there is some δ ∈ Γ such that v(a− b) > δ

implies v( f (a)− f (b)),v(g(a)−g(b))> ε + γ .
Now, we see that if v(a−b)> δ , then we have v(ϕ(b)−ϕ(a))≥min

{
v
(

f (b)− f (a)
g(a)

)
,v
(

f (b)
g(b) ·

g(b)−g(a)
g(a)

)}
.

We know that v
(

f (b)− f (a)
g(a)

)
> ε + γ − γ = ε and v

(
f (b)
g(b) ·

g(b)−g(a)
g(a)

)
= v
(

f (b)
g(b)

)
+ v
(

g(b)−g(a)
g(a)

)
>

0+ ε + γ − γ = ε since f (b)
g(b) ∈ D ⊆ V . Thus, v(ϕ(b)−ϕ(a)) > ε , showing that ϕ is continuous

at a, which means that ϕ is continuous since a ∈ E was arbitrarily chosen. □

For studying rings of integer-valued rational functions, there are certain Prüfer domains that are of
particular interest to us. The following definitions are from [CL98]:

Definition 2.2. A Prüfer domain D is monic if there is a monic unit-valued polynomial in D.

Definition 2.3. Let D be a Prüfer domain. The Prüfer domain D is singular if there exists a family Λ

of maximal ideals of D such that
• D =

⋂
m∈Λ

Dm,

• for each m ∈ Λ, the maximal ideal of Dm is a principal ideal, generated by some tm ∈ Dm, and
• there is an element t ∈ D and an integer n such that, for each m ∈ Λ, 0 < vm(t) < nvm(tm),

where vm is the valuation associated with Dm.

An important invariant of a Prüfer domain D is the Picard group of D, denoted as Pic(D). The
Picard group is defined to be the set of finitely generated ideals of D modulo the principal ideals of D.
The group operation is ideal multiplication.

The following result is stated only for IntR(D) in [Lop94], but the same proof can be used to get the
same statement about IntR(E,D).

Theorem 2.4. [Lop94] Let D be a monic Prüfer domain with E a subset of K, the quotient field of D.
Then IntR(E,D) is a Prüfer domain with torsion Picard group.

For a Prüfer domain D, the Picard group can be seen as a way to measure how far D is from being a
Bézout domain, since a Bézout domain has trivial Picard group. This next result shows that rings of
integer-valued rational functions over singular Prüfer domains are Bézout domains, which implies that
they are Prüfer domains as well.
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RING STRUCTURE OF INTEGER-VALUED RATIONAL FUNCTIONS 7

Theorem 2.5. [CL98] Let D be a singular Prüfer domain with E a subset of K, the quotient field of D.
Then IntR(E,D) is a Bézout domain.

We take the results of [Lop94, CL98] and restrict ourselves to looking at rings of integer-vauled
rational functions over valuation rings.

Remark 2.6. Note that a valuation domain is monic if and only if its residue field is not algebraically
closed, and a valuation domain is singular if and only if its maximal ideal is principal.

Corollary 2.7. If V is a valuation domain with a residue field that is not algebraically closed or a
principal maximal ideal, then IntR(V ) is a Prüfer domain.

In this section, we will explore the converse. To that end, we need a few definitions.

Definition 2.8. Let Γ be an abelian group with a total order on its elements. We say that Γ is a totally
ordered abelian group if for α,β ,γ,δ ∈ Γ, α ≤ β and γ ≤ δ imply that α + γ ≤ β +δ .

Definition 2.9. A totally ordered abelian group Γ is divisible if for all γ ∈ Γ and nonzero n ∈ Z, there
exists δ ∈ Γ such that nδ = γ .

Definition 2.10. Let Γ be a totally ordered abelian group. We can define its divisible hull

QΓ =
{

γ

n
| γ ∈ Γ,n ∈ Z>0

}
/∼,

where γ

n ∼ γ ′

m if mγ = nγ ′ in Γ. Then define the group operation to be γ

n +
γ ′

m = mγ+nγ ′

nm and the ordering

to be γ

n ≤ γ ′

m if and only if mγ ≤ nγ ′. Equivalently, we may define QΓ = Γ⊗ZQ.
Furthermore, if v : K → Γ∪{∞} is a valuation, we can extend the valuation to ṽ : K(tγ | γ ∈QΓ)→

QΓ∪{∞} defined as the monomial extension mapping tγ to γ for every γ ∈QΓ. More explicitly, for
nonzero elements of K[tγ | γ ∈QΓ], we define ṽ to be

ṽ

(
∑

i1,...,in

ai1···int
c1,i1···in
γ1 · · · tcn,i1···in

γn

)
= min

{
v(ai1...in)+

n

∑
k=1

ck,i1···inγk

}
,

where each ai1···in ∈ K. Then this extends uniquely to K(tγ | γ ∈QΓ).

Remark 2.11. The divisible hull QΓ of Γ is divisible and extends the ordering on Γ.

Remark 2.12. If m is principal, then the value group Γ is not divisible. Say m= (ϖ) for some ϖ ∈V .
There does not exist an element a ∈V such that 2v(a) = v(ϖ).

In order to consider many valuations at once, we introduce the notions of minimum valuation
functions and local polynomials. The minimal valuation function is closely related to monomial
valuations.

Definition 2.13. Take a nonzero polynomial f ∈ K[x] and write it as f (x) = anxn + · · ·+a1x+a0 for
a0,a1, . . . ,an ∈ K. We define the minimum valuation function of f as minval f ,v : Γ → Γ by

γ 7→ min{v(a0),v(a1)+ γ,v(a2)+2γ, . . . ,v(an)+nγ}
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RING STRUCTURE OF INTEGER-VALUED RATIONAL FUNCTIONS 8

for each γ ∈ Γ. We will denote minval f ,v as minval f if the valuation v is clear from context. It is
oftentimes helpful to think of minval f as a function from QΓ to QΓ defined as γ 7→ min{v(a0),v(a1)+
γ,v(a2)+2γ, . . . ,v(an)+nγ} for each γ ∈QΓ.

In the same setup, taking t ∈ K, we can define the local polynomial of f at t to be

loc f ,v,t(x) =
f (tx)
adtd mod m,

where d = max{i ∈ {0,1, . . . ,n} | v(ai)+ iv(t) = minval f (v(t))}. Again, we may omit the valuation v
in loc f ,v,t(x) and write loc f ,t(x) if the valuation is clear from the context. A priori, we do not know if
the coefficients of f (tx)

adtd are in V . We need to confirm this so that the local polynomial is well-defined.

Remark 2.14. Using the notation above, we compare the minimum valuation function to monomial
valuations. In Definition 3.3 of [Per18], the monomial valuation (centered at 0) v0,γ is defined to be
v0,γ( f ) = min{v(ai)+ iγ | i = 0, . . . ,n}. This shows that minval f (γ) = v0,γ( f ), so we can think of the
minimum valuation function as ranging over various monomial valuations.

Proposition 2.15. Let f ∈ K[x] be some nonzero polynomial and t ∈ K. Write f (x) = anxn + · · ·+
a1x+a0 for a0,a1, . . . ,an ∈ K. Then the local polynomial of f at t is a well-defined monic polynomial
in V/m[x] of degree d, where

d := max{i ∈ {0,1, . . . ,n} | v(ait i) = v(ai)+ iv(t) = minval f (v(t))}.

Moreover, if i1 < · · ·< is are the indices i such that minval f (v(t)) = v(ai)+ iv(t), then

loc f ,t(x) = ri1xi1 + · · ·+ ris−1xis−1 + xis ,

for some nonzero elements ri1 , . . . ,ris−1 ∈V/m.

Proof. We have that f (tx) = a0 + a1tx+ a1t2x2 + · · ·+ antnxn. Then consider each coefficient of
f (tx)
adtd . We calculate that v

(
ait i

adtd

)
≥ 0 for all i since minval f (v(t)) ≤ v(ait i) for all i. This shows that

f (tx)
adtd ∈V [x]. More specifically, v

(
ait i

adtd

)
= 0 if and only if v(ait i) = minval f (v(t)). Therefore, for i > d,

we have v
(

ait i

adtd

)
> 0. Moreover, the coefficient of the degree d term of f (tx)

adtd is 1, so f (tx)
adtd mod m has

degree d with leading coefficient 1.
Additionally, since v

(
ait i

adtd

)
= 0 if and only if v(ait i) = minval f (v(t)), we know that xi has a nonzero

coefficient in loc f ,t(x) exactly when minval f (v(t)) = v(ai)+ iv(t). □

Now we establish the minimal valuation function as a piecewise linear function. Furthermore, we
deduce that the slopes of the minimal valuation function can be obtained from the highest and lowest
degree terms in certain local polynomials.
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RING STRUCTURE OF INTEGER-VALUED RATIONAL FUNCTIONS 9

Proposition 2.16. For a nonzero f ∈ K[x], the function minval f has the following form evaluated at
γ ∈QΓ

minval f (γ) =



c1γ +β1, γ ≤ δ1,

c2γ +β2, δ1 ≤ γ ≤ δ2,
...
ck−1γ +βk−1, δk−2 ≤ γ ≤ δk−1,

ckγ +βk, δk−1 ≤ γ,

where c1, . . . ,ck ∈ N such that c1 > · · · > ck; β1, . . . ,βk ∈ Γ; and δ1, . . . ,δk−1 ∈ QΓ such that δ1 <
· · ·< δk−1.

Moreover, suppose that t ∈ K is such that v(t) = δi for some i ∈ {1, . . . ,k−1}. Write loc f ,t(x) =
r ji,t,1x ji,1 + · · ·+ r ji,t,si−1x ji,si−1 + x ji,si with ji,1 < · · · < ji,si , where r ji,t,1 , . . . ,r ji,t,si−1 ∈ V/m and are all
nonzero. Then ci+1 = ji,1 and ci = ji,si .

Proof. Write f (x) = anxn + · · ·+ a1x+ a0, where a0,a1, . . . ,an ∈ K. We know that minval f (γ) =
min{ jγ + v(a j) | j ∈ {0, . . . ,n}} for all γ ∈ QΓ. Then let δ1 < · · · < δk−1 be the elements of
QΓ such that minval f (δi) = jδi + v(a j) for at least two indices j. Since jγ + v(a j) = j′γ + v(a j′)

for j ̸= j′ if and only if γ =
v(a j′ )−v(a j)

j− j′ , we know that {δ1, . . . ,δk−1} is a subset of the finite set{ v(a j′ )−v(a j)

j− j′

∣∣∣ j, j′ ∈ {0, . . . ,n}, j ̸= j′
}

. For convenience, set δ0 =−∞ and δk = ∞.
For i ∈ {1, . . . ,k−1}, we set

ci := max{ j ∈ {0,1, . . . ,n} | minval f (δi) = jδi + v(a j)}.
Also set

ck := min{ j ∈ {0,1, . . . ,n} | minval f (δk−1) = jδk−1 + v(a j)}.
Next, set βi := v(aci) for i ∈ {1, . . . ,k}.

Fix i in {1, . . . ,k−1}. We want to show minval f (γ) = ciγ +βi for all γ ∈QΓ such that δi−1 ≤ γ ≤ δi.
Suppose not. Then there exists γ ∈ QΓ such that δi−1 ≤ γ < δi and minval f (γ) < ciγ + βi. We
now have that minval f (γ) = jγ + v(a j) < ciγ +βi for some j ∈ {0, . . . ,n} different from ci. Thus,
( j − ci)γ < βi − v(a j). Also note that jδi + v(a j) ≥ ciδi + βi, so ( j − ci)δi ≥ βi − v(a j). These
inequalities imply that ( j− ci)γ < βi − v(a j)≤ ( j− ci)δi. Because γ < δi, we can deduce that j > ci.

Using the inequalities again shows that γ <
βi−v(a j)

j−ci
≤ δi. We want both inequalities to be strict. If

βi−v(a j)
j−ci

= δi, then jδi + v(a j) = ciδi +βi. The fact that j > ci contradicts the maximality of ci. Thus,

γ <
βi−v(a j)

j−ci
< δi. Due to the fact that jδ + v(a j) = ciδ +βi for δ =

βi−v(a j)
j−ci

and the way δ1, . . . ,δk−1

are picked out, we know that minval f

(
βi−v(a j)

j−ci

)
< ci ·

βi−v(a j)
j−ci

+βi. We replace γ with βi−v(a j)
j−ci

and

repeat the argument. Since δi−1 ≤ γ <
βi−v(a j)

j−ci
< δi and there are only finitely many elements of

the form βi−v(a j)
j−ci

for j ̸= ci, this argument cannot be repeated infinitely. Therefore, a contradiction
is reached eventually after a finite number of repetitions. This shows that minval f (γ) = ciγ +βi for
all γ ∈QΓ such that δi−1 ≤ γ ≤ δi. A similar argument will show that minval f (γ) = ckγ +βk for all
γ ∈QΓ such that γ ≥ δk−1.
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RING STRUCTURE OF INTEGER-VALUED RATIONAL FUNCTIONS 10

Again, fix i ∈ {1, . . . ,k−1}. Suppose that t ∈ K is any element such that v(t) = δi. Write loc f ,t(x) =
r ji,t,1x ji,1 + · · ·+ r ji,t,si−1x ji,si−1 + x ji,si with ji,1 < · · · < ji,si , where r ji,t,1 , . . . ,r ji,t,si−1 ∈ V/m and are all
nonzero and each si ≥ 2. The local polynomial has this form due to Proposition 2.15. We also
furthermore know that ji,1 < · · ·< ji,si are all the indices j such that minval f (δi) = jδi + v(a j). We
then have ci = ji,si since ci is the maximum of all such indices. If i = k− 1, we have ck = ji,1 by
the definition of ck. Now suppose that i < k− 1 and ci+1 > ji,1 for a contradiction. The fact that
ji,1δi +β ji,1 = ci+1δi +βi+1 implies

ji,1δi+1 +β ji,1 = ji,1δi +β ji,1 + ji,1(δi+1 −δi)

= ci+1δi +βi+1 + ji,1(δi+1 −δi)

< ci+1δi +βi+1 + ci+1(δi+1 −δi)

= ci+1δi+1 +βi+1

= minval f (δi+1),

contradicting the definition of minval f (δi+1). This shows that ci+1 = ji,1. Note also that si > 1 by the
definition of δi. Thus, ci+1 = ji,1 < ji,si = ci, which implies that c1 > · · ·> ck. □

Remark 2.17. We see that if the value group Γ is divisible, then δ1, . . . ,δk given above are always in Γ.

Now we give some results about how information about the valuation of the polynomial evaluations
can be extracted from the minimum valuation polynomial and the local polynomials.

Lemma 2.18. Let f ∈ K[x] be a nonzero polynomial. For all nonzero t ∈ K, we have minval f (v(t))≤
v( f (t)).

Proof. Write f (x) = anxn + · · ·+a1x+a0, where a0, . . . ,an ∈ K. Then

v( f (t)) = v

(
n

∑
i=0

ait i

)
≥ min{v(ait i) | i ∈ {0, . . . ,n}}= minval f (v(t)).

□

In other words, the minimum valuation function serves as a lower bound for the valuation of
polynomial evaluations. We now characterize when this lower bound is strict or not using a local
polynomial.

Proposition 2.19. Let f ∈ K[x] be nonzero and t ∈ K. Then there exists an s ∈ K with v(s) = v(t) such
that v( f (s))>minval f (v(t)) if and only if loc f ,t(x) has a nonzero root. More specifically, for u∈V such
that v(u) = 0, we have that v( f (tu))>minval f (v(t)) if loc f ,t(u+m) = 0 and v( f (tu)) =minval f (v(t))
if loc f ,t(u+m) ̸= 0.

Proof. Write f (x) = a0 +a1x+ · · ·+anxn with each ai ∈ K. Let i1 < · · ·< ir be all the indices i such
that minval f (v(t)) = iv(t)+ v(ai). Then

f (tx)
airt ir

=
a0

airt ir
+

a1t
airt ir

x+
a2t2

airt ir
x2 + · · · antn

airt ir
xn.
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RING STRUCTURE OF INTEGER-VALUED RATIONAL FUNCTIONS 11

Taking this modulo m, we get

loc f ,t(x) =
ai1t i1

airt ir
xi1 + · · ·+

air−1t ir−1

airt ir
xir−1 + xir mod m.

Take s ∈ K with v(s) = v(t). Set u = s
t . Note that u ̸= 0 mod m. Then v( f (s)) > minval f (v(t)) =

v(airt
ir) if and only if

f (tu)
airt ir

=
a0

airt ir
+

a1t
airt ir

u+
a2t2

airt ir
u2 + · · · antn

airt ir
un

has valuation under v that is strictly greater than 0, which can happen if and only if

loc f ,t(u+m) =
ai1t i1

airt ir
ui1 + · · ·+

air−1t ir−1

airt ir
uir−1 +uir mod m= 0.

□

We observe that most of the time, the local polynomial is a monomial, which does not have nonzero
roots. Thus, the minimum valuation function gives the valuation of the polynomial evaluations most of
the time.

Corollary 2.20. Take f ∈ K[x] to be a nonzero polynomial. Then using the notation of Proposition
2.16, if t ∈ K is such that v(t) ̸= δi for all i ∈ {1, . . . ,k−1}, then v( f (t)) = minval f (v(t)).

Proof. Write f (x) = anxn + · · ·+ a1x+ a0, where a0, . . . ,an ∈ K. Since v(t) ̸= δi for any i, we have
that minval f (v(t)) = jv(t) + v(a j) for a unique j in {0, . . . ,n} by the definition of δ1, . . . ,δk−1 in
Proposition 2.16. Thus, loc f ,t(x) = x j, which has no nonzero roots, so v( f (t)) = minval f (v(t)) by
Proposition 2.19. □

If we further assume that V is a valuation domain with infinite residue field, we can say something
about the finitely many exceptions δ1, . . . ,δk−1 of the value group. In this case, every element of
the value group has some element of that value whose evaluation has valuation determined by the
minimum valuation function.

Corollary 2.21. Suppose V has infinite residue field. If f1, . . . , fm ∈ K[x] are a finite number of nonzero
polynomials, then for any γ ∈ Γ, there exists an a ∈ K with v(a) = γ such that v( fi(a)) = minval fi(γ)
for each i = 1, . . . ,m.

Proof. Fix γ ∈ Γ and t ∈ K with v(t) = γ . Let u ∈ K with v(u) = 0. We know for any nonzero
polynomial f ∈ K[x] that v( f (tu)) > minval f (v(t)) if and only if loc f ,t(u +m) = 0. However,
loc f1,t , . . . , loc fm,t can collectively only have a finite number of nonzero roots in V/m. Thus, there exists
u ∈V× such that loc fi,t(u+m) ̸= 0 for all i and hence v( fi(tu)) = minval fi(γ) for each i = 1, . . . ,m.

□

Proposition 2.22. Let f ,g ∈ K[x] be nonzero polynomials. Then

minval f g = minval f +minvalg .
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RING STRUCTURE OF INTEGER-VALUED RATIONAL FUNCTIONS 12

Proof. We will view f and g as being in K(tγ | γ ∈ QΓ)[x] and take the monomial valuation v that
extends V mapping tγ to γ for each γ ∈QΓ.

By Corollary 2.20, we know that for all but finitely many γ ∈QΓ, we have that v( f (a)) =minval f (γ),
v(g(a)) = minvalg(γ), and v(( f g)(a)) = minval f g(γ) for all a ∈ K(tγ | γ ∈QΓ) such that v(a) = γ . For
such values of γ , we take aγ ∈ K(tγ | γ ∈QΓ) such that v(aγ) = γ . This means that

minval f g(γ) = v(( f g)(aγ)) = v( f (aγ))+ v(g(aγ)) = minval f (γ)+minvalg(γ)

holds for all but finitely many γ ∈QΓ. Since minval f g,minval f , and minvalg are all piecewise linear
functions from QΓ to QΓ by Proposition 2.16, we have equality for all γ ∈QΓ and in particular for all
γ ∈ Γ. □

The previous proposition also follows using the fact that minval f g(γ) = v0,γ( f g) = v0,γ( f ) +
v0,γ(g) = minval f (γ)+minvalg(γ) for every γ ∈QΓ.

We now use this fact to define the minimum valuation function of a nonzero rational function.

Definition 2.23. Let ϕ ∈ K(x) be a nonzero rational function. Write ϕ = f
g for some f ,g ∈ K[x]. For

γ ∈ Γ, we define minvalϕ(γ) = minval f (γ)−minvalg(γ), the minimum valuation function of ϕ .
This is well defined. If f

g = F
G for some F,G ∈ K[x], then f G = gF and then minval f +minvalG =

minvalg+minvalF , which means that minval f −minvalg = minvalF −minvalG.

There is an analog for Proposition 2.16 giving the form of the minimum valuation function of a
rational function. Note that the ordering on the coefficients of γ is lost and these coefficients can be
negative.

Proposition 2.24. For a nonzero ϕ ∈ K(x), the function minvalϕ has the following form evaluated at
γ ∈QΓ

minvalϕ(γ) =



c1γ +β1, γ ≤ δ1,

c2γ +β2, δ1 ≤ γ ≤ δ2,
...
ck−1γ +βk−1, δk−2 ≤ γ ≤ δk−1,

ckγ +βk, δk−1 ≤ γ,

where c1, . . . ,ck ∈ Z; β1, . . . ,βk ∈ Γ; and δ1, . . . ,δk−1 ∈QΓ such that δ1 < · · ·< δk−1.

Proof. Write ϕ = f
g for some polynomials f ,g ∈ K[x]. By Proposition 2.16, we know there are

δ1, . . . ,δk−1,δ
′
1, . . . ,δ

′
k′−1 such that −∞ = δ0 < δ1 < · · ·< δk−1 < δk = ∞ and −∞ = δ ′

0 < δ ′
1 < · · ·<

δ ′
k′−1 < δk′ = ∞ and that for all γ ∈QΓ such that γ is between δi and δi+1, we have some ci ∈ N and

βi ∈ Γ such that
minval f (γ) = ciγ +βi

and for all γ ∈QΓ such that γ is between δ ′
i and δ ′

i+1, we have some c′i ∈ N and β ′
i ∈ Γ such that

minvalg(γ) = c′iγ +β
′
i .

Now order the elements of the set {δ0, . . . ,δk,δ
′
0, . . . ,δ

′
k} and rename the elements δ ′′

0 , . . . ,δ
′′
k′′ so that

−∞ = δ ′′
0 < δ ′′

1 < · · · < δ ′′
k′′−1 < δ ′′

k′′ = ∞. Let r be such that r ∈ {0, . . . ,k′′− 1}. We know that the
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RING STRUCTURE OF INTEGER-VALUED RATIONAL FUNCTIONS 13

interval between δ ′′
r and δ ′′

r+1 is contained in the interval between δi and δi+1 and also contained in the
interval between δ ′

j and δ ′
j+1 for some i and j. Thus, for all γ ∈QΓ such that δ ′′

r ≤ γ ≤ δ ′′
r+1, we have

minvalϕ(γ) = minval f (γ)−minvalg(γ) = (ci − c′j)γ +(βi −β
′
j),

giving us the desired form for minvalϕ . □

Even though the ordering on the coefficients of γ in minvalϕ is lost, the coefficients can still give
information about the powers that appear in the local polynomials.

Lemma 2.25. Take ϕ ∈ K(x) to be nonzero and α ∈ Γ. There exist ε ∈QΓ with ε > 0 small enough,
c,c′ ∈ Z, and β ,β ′ ∈ Γ such that

minvalϕ(γ) =

{
cγ +β , if α − ε < γ < α,

c′γ +β ′, if α < γ < α + ε.

Write ϕ = f
g for some f ,g∈K[x]. Take t ∈K such that v(t)= γ . We can write loc f ,t = ai1xi1 + · · ·+air x

ir

and locg,t = b j1x j1 + · · ·+b jsx
js for some nonzero ai1 , . . . ,air ,b j1 , . . . ,b js ∈V/m. Then

c = ir − js and c′ = i1 − j1.

Proof. Due to Proposition 2.16, we can make ε small enough so that there exist ζ ,ζ ′,η ,η ′ ∈ Γ such
that

minval f (γ) =

{
irγ +ζ , if α − ε < γ < α,

i1γ +ζ ′, if α < γ < α + ε

and

minvalg(γ) =

{
jsγ +η , if α − ε < γ < α,

j1γ +η ′, if α < γ < α + ε.

Since minvalϕ = minval f −minvalg, we obtain c = ir − js and c′ = i1 − j1. □

However, for rational functions, there is no analog of Lemma 2.18, since it is possible that
minvalϕ(v(t)) is greater than, equal to, or less than v(ϕ(t)). To calculate how minvalϕ(v(t)) compares
with v(ϕ(t)), we can try to apply Proposition 2.19 to the local polynomials of the numerator and the
denominator of ϕ . This does not give a definite answer in the case when the local polynomials have a
common nonzero root, so further calculations are needed in this case. Nevertheless, there are analogs
of Corollary 2.20 and Corollary 2.21 that say minvalϕ(v(t)) and v(ϕ(t)) are equal most of the time.

Lemma 2.26. Take ϕ ∈ K(x) to be a nonzero rational function. For all but finitely many γ ∈ Γ, we
have that v(ϕ(t)) = minvalϕ(v(t)) for all t ∈ K such that v(t) = γ .

Proof. We write ϕ = f
g for some f ,g ∈ K[x]. Corollary 2.20 tells us that for all but finitely many γ ∈ Γ,

we have v( f (t)) = minval f (v(t)) for all t ∈ K such that v(t) = γ . Similarly, for all but finitely many
γ ∈ Γ, we have v(g(t)) = minvalg(v(t)) for all t ∈ K such that v(t) = γ . There are still only finitely
many values of γ ∈ Γ we need to exclude. Thus, for all but finitely many γ ∈ Γ, we have that

v(ϕ(t)) = v( f (t))− v(g(t)) = minval f (v(t))−minvalg(v(t)) = minvalϕ(v(t))

for all t ∈ K such that v(t) = γ . □
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RING STRUCTURE OF INTEGER-VALUED RATIONAL FUNCTIONS 14

Proposition 2.27. Suppose the residue field of V is infinite. If we have nonzero ϕ1, . . . ,ϕm ∈ K(x), then
for any γ ∈ Γ, there exists a ∈ K with v(a) = γ such that minvalϕi(γ) = v(ϕi(a)) for all i.

Proof. Write ϕi =
fi
gi

with fi,gi ∈ K[x] for all i. By applying Corollary 2.21 to f1, . . . , fm,g1, . . . ,gm,
we see that for any γ ∈ Γ, there exists a ∈ K with v(a) = γ such that minval fi(γ) = v( fi(a)) and
minvalgi(γ) = v(gi(a)) for all i. Putting these together yields

minvalϕi(γ) = minval fi(γ)−minvalgi(γ) = v( fi(a))− v(gi(a)) = v(ϕi(a))

for all i. □

The following lemma will be useful in describing the case of a valuation domain with algebraically
closed residue field and maximal ideal that is not principal.

Lemma 2.28. Suppose that V/m is algebraically closed and m is not a principal ideal of V . Let
ϕ ∈ K(x) be a nonzero rational function such that there exist α,ε ∈ Γ with ε > 0 so that

minvalϕ(γ) =

{
c1γ +β1, if α − ε ≤ γ ≤ α ,
c2γ +β2, if α ≤ γ ≤ α + ε ,

for some c1,c2 ∈ Z and β1,β2 ∈ Γ.
If c1 > c2, then there exists a ∈ K with v(a) = α and v(ϕ(a))> minvalϕ(α).
If c1 < c2, then there exists a ∈ K with v(a) = α and v(ϕ(a))< minvalϕ(α).

Proof. Write ϕ = f
g for some f ,g ∈ K[x]. Let b be an element of K such that v(b) = α . Then we can

completely factor loc f ,b(x) and locg,b(x) as V/m is algebraically closed, so those polynomials have the
forms

loc f ,b(x) = xi(x−ξ1)
e1 · · ·(x−ξn)

en and locg,b(x) = x j(x−ξ1)
e′1 · · ·(x−ξn)

e′n ,

where each ξk ∈V/m are nonzero and i, j,ek,e′k ∈ N for k = 1,2, . . . ,n.
Now by Proposition 2.16, we note that there exists some ε ′ ∈ Γ with 0 < ε ′ ≤ ε such that

minval f (γ) =

{
d1γ +δ1, if α − ε ′ ≤ γ ≤ α ,
d2γ +δ2, if α ≤ γ ≤ α + ε ′

and

minvalg(γ) =

{
d′

1γ +δ ′
1, if α − ε ′ ≤ γ ≤ α ,

d′
2γ +δ ′

2, if α ≤ γ ≤ α + ε ′,

for some d1,d2,d′
1,d

′
2 ∈ N and δ1,δ2,δ

′
1,δ

′
2 ∈ Γ. From this, we get that

d1 −d′
1 = c1 and d2 −d′

2 = c2

by Lemma 2.25. We also have

(i+ e1 + · · ·+ en)− i = d1 −d2 and ( j+ e′1 + · · ·+ e′n)− j = d′
1 −d′

2

by Proposition 2.16. Putting it all together, we get that

(e1 + · · ·+ en)− (e′1 + · · ·+ e′n) = c1 − c2 > 0.

This means that there exists ℓ ∈ {1, . . . ,n} such that eℓ > e′ℓ.
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RING STRUCTURE OF INTEGER-VALUED RATIONAL FUNCTIONS 15

Let u ∈V be such that u+m= ξℓ. We will lift loc f ,b(x) and locg,b(x) back to V [x]. We now have

f (bx)
t

= (x−u)eℓ f1(x)+ f2(x) and
g(bx)

t ′
= (x−u)e′ℓg1(x)+g2(x),

where t, t ′ ∈ K such that v(t) = minval f (v(b)) and v(t ′) = minvalg(v(b)), f1,g1 ∈ V [x] such that
f1(u),g1(u) /∈m, and f2,g2 ∈m[x].

Let h ∈ m such that v(h) < 1
eℓ

min{minval f2(0),minvalg2(0)}. This is possible since m is not
principal. Set a := b(u+h). Note that v(a) = v(b) = α . We then calculate

ϕ(a) =
t(heℓ f1(u+h)+ f2(u+h))

t ′(he′ℓg1(u+h)+g2(u+h))
.

Then, v(ϕ(a)) = minvalϕ(α)+(eℓ− e′ℓ)v(h)> minvalϕ(α), as desired.
If c1 < c2, then apply the c1 > c2 case to 1

ϕ
to get the desired result. □

We use the previous lemma to determine that IntR(V ) is not a Prüfer domain for V a valuation
domain with algebraically closed residue field and maximal ideal that is not principal.

Theorem 2.29. Suppose that V/m is algebraically closed and m is not a principal ideal of V . Then
IntR(V ) is not Prüfer.

Proof. Aiming for a contradiction, we assume that IntR(V ) is Prüfer.
Let d ∈m. Since IntR(V ) is Prüfer, the finitely-generated ideal (x,d) is invertible. This means that

there are ϕ,ψ ∈ (x,d)−1 such that xϕ +dψ = 1. By Proposition 2.27, there exists some b ∈V such that
v(b) = v(d) and v(ϕ(b)) = minvalϕ(v(d)) and v(ψ(b)) = minvalψ(v(d)). Evaluating xϕ +dψ = 1 at
x = b, we obtain

bϕ(b)+dψ(b) = 1.
We have xϕ,dψ ∈ IntR(V ), so bϕ(b),dψ(b) ∈ V . Thus, we have v(bϕ(b)) = 0 or v(dψ(b)) = 0.

Then we get minvalϕ(v(d)) = v(ϕ(b)) =−v(b) =−v(d) or minvalψ(v(d)) = v(ψ(b)) =−v(d).
Either way, we have some function ρ ∈ (x,d)−1 such that v(bρ(b))= 0 and v(ρ(b))=minvalρ(v(d))=

−v(d). By Proposition 2.24, there exists some ε ∈QΓ with ε > 0 such that there exist some c,c′ ∈ Z
and β ,β ′ ∈ Γ so that

minvalρ(γ) =

{
cγ +β , v(d)− ε ≤ γ ≤ v(d),
c′γ +β ′, v(d)≤ γ ≤ v(d)+ ε.

Since m is not principal, due to Lemma 2.26, there exists b′ ∈ V with the property that v(d)− ε <
v(b′)< v(d) and v(ρ(b′)) = cv(b′)+β . Since xρ ∈ IntR(V ), we have

v(b′ρ(b′)) = v(b′)+ cv(b′)+β = (c+1)v(b′)+β ≥ 0 = v(bρ(b)) = (c+1)v(b)+β .

This implies (c+1)v(b′)≥ (c+1)v(b) and thus 0 ≥ (c+1)(v(b)− v(b′)). We know that v(b)> v(b′)
so we must have c+1 ≤ 0. In other words, c ≤−1.

Now there exists b′′ ∈ V so that v(d) < v(b′′) < v(d)+ ε and v(ρ(b′′)) = c′v(b′′)+β ′. Because
dρ ∈ IntR(V ), we get that

v(dρ(b′′))) = v(d)+ c′v(b′′)+β
′ ≥ 0 = v(bρ(b)) = v(d)+ c′v(b)+β

′.

Thus, c′v(b′′)≥ c′v(b). This implies that c′ ≥ 0 since v(b′′)> v(b).
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RING STRUCTURE OF INTEGER-VALUED RATIONAL FUNCTIONS 16

Since c < c′, there exists a ∈ V such that v(ρ(a)) < minvalρ(v(d)) = −v(d) and v(a) = v(d)
according to Lemma 2.28. This implies that v(aρ(a))< 0, contradicting the fact that xρ ∈ IntR(V ).
We can conclude that (x,d) is not invertible, so IntR(V ) cannot be Prüfer. □

This result combined with the results of [Lop94, CL98] completely classifies the case of when
IntR(V ) is a Prüfer domain given that V is a valuation domain.

Corollary 2.30. Let V be a valuation domain. Then IntR(V ) is a Prüfer domain if and only if V/m is
not algebraically closed or m is a principal ideal of V .

In fact, for a valuation domain V , most of the time when IntR(V ) is Prüfer, the ring IntR(V ) is also
Bézout. We know that IntR(V ) is Bézout when V has a principal maximal ideal or there exist two
nonconstant, monic, unit-valued polynomials over V of coprime degrees [CL98, Theorem 3.5 and
Corollary 3.3]. Note that the latter condition is equivalent to saying that there exist two nonconstant
polynomials of coprime degrees over V/m with no roots in V/m, where m is the maximal ideal of V .
We will now completely characterize when the ring integer-valued rational functions over a valuation
domain is a Bézout domain. We first require a lemma about the minimum valuation functions of
generators of finitely-generated ideals in IntR(V ).

Lemma 2.31. Suppose V/m is infinite. Let ϕ1, . . . ,ϕn,ψ1, . . . ,ψm ∈ IntR(V ) be nonzero integer-valued
rational functions such that

(ϕ1, . . . ,ϕn) = (ψ1, . . . ,ψm)

as ideals of IntR(V ). Then

min{minvalϕ1(γ), . . . ,minvalϕn(γ)}= min{minvalψ1(γ), . . . ,minvalψm(γ)}

for all γ ∈ Γ such that γ ≥ 0.

Proof. Let γ ∈ Γ with γ ≥ 0. Since V has an infinite residue field, there exists d ∈V such that v(d) = γ

and minvalϕi(γ) = v(ϕi(d)),minvalψ j(γ) = v(ψ(d)) for all i and j by Proposition 2.27. Because
(ϕ1(d), . . . ,ϕn(d)) = (ψ1(d), . . . ,ψm(d)), it follows that

min{v(ϕ1(d)), . . . ,v(ϕn(d))}= min{v(ψ1(d)), . . . ,v(ψm(d))}.

Therefore, we obtain

min{minvalϕ1(γ), . . . ,minvalϕn(γ)}= min{minvalψ1(γ), . . . ,minvalψm(γ)}.

□

Now we characterize when IntR(V ) is a Bézout domain.

Proposition 2.32. Suppose that m is not principal and there does not exist two nonconstant polynomials
of coprime degrees over V/m with no roots in V/m. Then IntR(V ) is not Bézout.

Proof. Let t ∈m. We want to show that the finitely-generated ideal (x, t) of IntR(V ) is not principal.
Suppose on the contrary that (x, t) = (ϕ) for some ϕ ∈ IntR(V ).
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RING STRUCTURE OF INTEGER-VALUED RATIONAL FUNCTIONS 17

Note that V/m is necessarily an infinite field, so by Lemma 2.31,

minvalϕ(γ) = min{minvalx(γ),minvalt(γ)}=

{
γ, if 0 ≤ γ ≤ v(t),
v(t), if γ ≥ v(t),

for each γ ∈ Γ such that γ ≥ 0. Therefore, if we write ϕ = f
g for some f ,g ∈V [x], then deg(loc f ,t) =

deg(locg,t)+1 and the degree of the lowest degree monomial of loc f ,t and locg,t are the same by Lemma
2.25. Plus, we claim it is impossible for every nonzero element of V/m to be a root of loc f ,t and locg,t
of the same multiplicity. Here, we allow for the possibility that an element is a root of multiplicity
0, meaning it is not a root. Suppose ξ1, . . . ,ξn are the nonzero roots of loc f ,t and locg,t with each ξi

appearing in loc f ,t and locg,t with multiplicity ei. Then the polynomials F(x) = loc f ,t(x)
xm(x−ξ1)

e1 ···(x−ξn)en and

G(x) = locg,t(x)
xm(x−ξ1)

e1 ···(x−ξn)en both have no roots over V/m. Moreover, since deg(F) = deg(G)+1 ≥ 3,
we know that gcd(deg(F),deg(G)) = 1. Thus, the assumption about V/m is contradicted.

Thus, there exists some nonzero element ξ ∈V/m such that ξ is a root of loc f ,t of multiplicity c1
and ξ is a root of locg,t of multiplicity c2 with c1 ̸= c2. Let u ∈V be a lift of ξ . Then by lifting loc f ,t ,
we obtain

f (tx)
b

= (x−u)c1 f1(x)+ f2(x),

where b ∈ V is some element such that v(b) = minval f (v(t)), f1(x) ∈ V [x] is such that f1(u) /∈ m,
and f2(x) ∈ m[x]. We similarly obtain g(tx)

b′ = (x − u)c2g1(x) + g2(x), where b′ ∈ V is such that
v(b′) = minvalg(v(t)), g1(x) ∈ V [x] is such that g1(u) /∈ m, and g2(x) ∈ m[x]. Then there exists an
element h ∈m such that v(h)< 1

max{c1,c2}
min{minval f2(0),minvalg2(0)} and

v
(

f (t(u+h))
b

)
= v(hc1 f1(u+h)+ f2(u+h)) = v(hc1 f1(u+h)) = c1v(h).

Therefore, v( f (t(u+ h))) = c1v(h)+minval f (v(t)). A similar calculation yields v(g(t(u+ h))) =
c2v(h)+minvalg(v(t)). Now, we have

v(ϕ(t(u+h))) = (c1 − c2)v(h)+minvalϕ(v(t)) = (c1 − c2)v(h)+ v(t).

We must have v(ϕ(t(u+ h))) = min{v(t(u+ h)),v(t)} = v(t) because ϕ generates (x, t). This
implies that c1 = c2, a contradiction. Thus, the existence of ϕ is impossible, meaning that IntR(V )
cannot be Bézout. □

This, along with [CL98, Theorem 3.5 and Corollary 3.3], gives us a complete characterization of
when IntR(V ) is a Bézout domain.

Corollary 2.33. The ring IntR(V ) is a Bézout domain if and only if m is principal or there exist two
nonconstant polynomials of coprime degrees over V/m with no roots in V/m.

2.1. When IntR(V ) is not a Prüfer domain. We have completely classified the conditions on V that
make IntR(V ) Prüfer. We consider the case when IntR(V ) is not Prüfer and try to understand in what
ways IntR(V ) fails to be Prüfer.

If IntR(V ) is not Prüfer, then we know that V has algebraically closed residue field and maximal
ideal that is not principal. We first consider the case when we additionally assume that the value group
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RING STRUCTURE OF INTEGER-VALUED RATIONAL FUNCTIONS 18

that is not divisible. Since IntR(V ) is not Prüfer, there must be some prime ideal P of IntR(V ) such
that IntR(V )P is not a valuation domain. We will show that such a prime ideal P cannot be a pointed
maximal ideal. First, we will need a lemma.

Lemma 2.34. Let D be a domain and p be a prime ideal. Let a,b be two elements of K, the field of
fractions of D, such that b ̸= 0. Then a

b ∈ Dp if and only if there exists c ∈ K such that a
c ∈ D and

b
c ∈ D\p.

Proof. Suppose a
b ∈ Dp. This implies that a

b = r
s for some r ∈ D and s ∈ D\p. Now set c := b

s . We see
that a

b/s = r ∈ D and b
b/s = s ∈ D\p.

On the other hand, if there exists c ∈ K such that a
c ∈ D and b

c ∈ D\p, then a
b = a/c

b/c ∈ Dp. □

We will show that for a valuation domain V with algebraically closed residue field, maximal ideal
that is not principal, and value group that is not divisible that IntR(V ) localized at a pointed maximal
ideal is a valuation domain. This is true in a more general setting so we give the result with weaker
assumptions.

Proposition 2.35. Suppose that Γ is not divisible. Let E be a subset of K and take a ∈ E. Then

IntR(E,V )Mm,a = {ϕ ∈ K(x) | ϕ(a) ∈V},

a valuation domain.

Proof. It suffices to assume without loss of generality that 0 ∈ E and show that IntR(E,V )Mm,0 = {ϕ ∈
K(x) | ϕ(0) ∈V} since IntR(E,V )∼= IntR(E −a,V ) for all a ∈ E.

We see that IntR(E,V )Mm,0 ⊆ {ϕ ∈ K(x) | ϕ(0) ∈V}, so we want to show the reverse inclusion. Let
ϕ ∈ K(x) be a nonzero rational function such that ϕ(0) ∈V . We can write ϕ = f

g such that f ,g ∈ K[x]
and v(g(0)) = 0.

Since v(g(0)) = 0, we know that v(g(a)) = 0 for all a ∈ K such that v(a) is sufficiently large due
to the fact that the valuation of each monomial in g(a) except the constant can be arbitrarily large
depending on v(a). We also know that by Corollary 2.20 that v( f (a)) = minval f (v(a)) for all a ∈ K
such that v(a) is sufficiently large. Since v( f (0)) ≥ 0, we can ensure that v( f (a)) ≥ 0 for all a ∈ K
such that v(a) is sufficiently large. The reasoning for this is similar to that for g(x), except f (x)
might not have a constant term. From this, we deduce that there exists δ ∈ Γ with δ ≥ 0 such that
v( f (d))≥ v(g(d)) = 0 for all d ∈ K with v(d)> δ .

Since Γ is not divisible, there exists η ∈QΓ\Γ such that η > δ . There also exists an n ∈ N with
n > 0 such that nη ∈ Γ. Let m := max{deg f ,degg}. Set h(x) := 1

t xmn +1, where t ∈ V is such that
v(t) = mnη . We want to show that f

h ,
g
h ∈ IntR(E,V ) and g

h /∈Mm,0.
Now let d ∈ E. Then

v(h(d)) =

{
0, if v(d)> η ,

mn(v(d)−η), if v(d)< η .
.

From this, we can gather that for all d ∈ E with v(d) > η , we have v
(

f
h (d)

)
≥ 0 and v

(g
h(d)

)
≥ 0.

Furthermore, g
h(0) = g(0) /∈m.
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RING STRUCTURE OF INTEGER-VALUED RATIONAL FUNCTIONS 19

Now fix d ∈ E such that v(d) < η . We know v( f (d)) ≥ minval f (v(d)) = cv(d) + β for some
c ∈ Z and β ∈ Γ. Notice that cη +β ≥ minval f (η) by the definition of minval f and thus cη +β ≥
minval f (η)≥ 0. This implies β ≥−cη . Now we obtain

v( f (d))≥ cv(d)+β ≥ c(v(d)−η)> mn(v(d)−η) = v(h(d))

because c ≤ m < mn and v(d)−η < 0. This shows that f
h (d) ∈ m. We can show that g

h(d) ∈ m the
same way. Thus, f

h ,
g
h ∈ IntR(E,V ) and g

h /∈Mm,0, which implies that f
g = ϕ ∈ IntR(E,V )Mm,a .

This shows that IntR(E,V )Mm,a = {ϕ ∈ K(x) | ϕ(a) ∈V}, so IntR(E,V )Mm,a is a valuation domain.
□

Suppose we have a valuation domain V such that m is not a principal ideal of V and V/m is
algebraically closed. We know that IntR(V ) is not Prüfer, so there must be some prime ideal P of
IntR(V ) such that IntR(V )P is not a valuation domain. We have just seen that this ideal cannot be a
pointed maximal ideal if Γ is not divisible. We will give an example of such a prime in the form of an
ultrafilter limit of pointed maximal ideals. We will also use the idea of a pseudo-divergent sequence
[Per18, Definition 2.1]. Note that we do not need to assume that the value group of V is not divisible.

Proposition 2.36. Suppose that m is not a principal ideal of V and V/m is algebraically closed. Fix
some d ∈ V with v(d) > 0. Let {di}∞

i=1 ⊆ V such that v(di) > v(d) for each i and for each ε ∈ Γ

with ε > 0, there exists an i such that v(di)< v(d)+ ε . Then let U be a non-principal ultrafilter of
{Mm,di}∞

i=1. Then lim
U

Mm,di is a prime ideal of IntR(V ) such that IntR(V )lim
U

Mm,di
is not valuation

domain.

Proof. First note that the existence of {di}∞
i=1 ⊆ V such that v(di) > v(d) for each i and for each

ε ∈ Γ with ε > 0, there exists an i such that v(di)< v(d)+ ε depends on the maximal ideal not being
principal.

We will show that x+d
d /∈ IntR(V )lim

U
Mm,di

. A similar argument will show that d
x+d /∈ IntR(V )lim

U
Mm,di

.

From this, we will see that IntR(V )lim
U

Mm,di
is not valuation domain.

Suppose on the contrary that x+d
d ∈ IntR(V )lim

U
Mm,di

. Then we may write x+d
d = ϕ

ψ
, where ϕ,ψ ∈

IntR(V ) and ψ /∈ lim
U

Mm,di . Set ρ = d
ψ

. Then x+d
ρ

= ϕ and d
ρ
= ψ .

We then get that {Mm,di | i ∈ N,ψ /∈Mm,di} ∈ U . Because U is not principal, {Mm,di | i ∈ N,ψ /∈
Mm,di} is an infinite set. Therefore, there exists i ∈ N such that v(di) is arbitrarily close to v(d) and
ψ /∈Mm,di , or equivalently, v(ψ(di)) = 0. This shows that there exists some ε ∈ Γ with ε > 0 such
that minvalψ(γ) = 0 for γ ∈ Γ such that v(d)≤ γ ≤ v(d)+ε . Since minvalρ = minvald −minvalψ , we
obtain that minvalρ(γ) = v(d) for γ such that v(d)≤ γ ≤ v(d)+ ε .

On the other hand, we can make ε small enough so that minvalρ(γ) = cγ + β for γ such that
v(d)−ε ≤ γ ≤ v(d) for some c∈Z and β ∈Γ. We know that minvalρ(v(d))= v(d), so β =(1−c)v(d).
Next, since ϕ ∈ IntR(V ), for γ ∈Γ with γ ≥ 0, we have that minvalx+d(γ)−minvalρ(γ)=minvalϕ(γ)≥
0. Lemma 2.26 implies this inequality for almost all such values of γ , and by the form of the minimum
valuation function given in Proposition 2.24, the inequality holds for all γ ≥ 0. Thus, for γ such that
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RING STRUCTURE OF INTEGER-VALUED RATIONAL FUNCTIONS 20

v(d)− ε < γ ≤ v(d), we get

γ = minvalx+d(γ)≥ minvalρ(γ) = cγ +(1− c)v(d).

This implies that (1− c)γ ≥ (1− c)v(d), but we have γ ≤ v(d), so it must be the case that 1− c ≤ 0,
or equivalently, c ≥ 1.

By Lemma 2.28, there exists a ∈V with v(a) = v(d) such that v(ρ(a))> v(d), but then v(ψ(a)) =
v
(

d
ρ(a)

)
< 0, contradicting the fact that ψ ∈ IntR(V ). Thus, x+d

d /∈ IntR(V )lim
U

Mm,di
.

□

Remark 2.37. Suppose that m is not a principal ideal of V , that V/m is algebraically closed, and that
Γ is not divisible. Then IntR(V ) is an example of an essential domain, a domain that can be written as
the intersection of some family of essential valuation overrings, that is not a PvMD. Another example
of an essential domain that is not a PvMD can be found in [HO73].

We can write
IntR(V ) =

⋂
a∈V

IntR(V )Mm,a .

For every a ∈V , we know that Mm,a is essential by Proposition 2.35. This means that IntR(V ) is an
essential domain. Furthermore, for every a ∈V , the ideal Mm,a being essential implies that Mm,a is a
t-ideal [Kan89, Lemma 3.17]. Using the notation of the previous proposition, we know that lim

U
Mm,di

is a t-ideal since the ultrafilter limit of t-ideals is a t-ideal [CLT00, Proposition 2.5]. However, the
ideal lim

U
Mm,di is a t-maximal ideal of IntR(V ) that is not essential. Thus, IntR(V ) is not a PvMD.

We will now consider the case where V/m is algebraically closed and the value group is divisible
(which implies that m is not principal). We can actually detect that IntR(V ) is not Prüfer by localizing
at a pointed maximal ideal.

Proposition 2.38. Suppose that V/m is algebraically closed and Γ is divisible. Then the localization
of IntR(V ) at any pointed maximal ideal is not a valuation ring.

Proof. Let a ∈V . Mapping x 7→ x−a and fixing V determines an automorphism for IntR(V ) for any
a ∈V , we can study the behavior of localizing IntR(V ) at Mm,a by only considering the localization at
Mm,0.

Suppose for a contradiction that W := IntR(V )Mm,0 is a valuation domain. Fix a nonzero d ∈m. We
have d

x+d ∈W or x+d
d ∈W . Thus, by Lemma 2.34, we have some ϕ ∈ K(x) such that d

ϕ
∈ IntR(V ) and

x+d
ϕ

∈ IntR(V ), and additionally, d
ϕ
/∈Mm,0 or x+d

ϕ
/∈Mm,0.

We know that minvalϕ has the form

minvalϕ(γ) =



c1γ +β1, γ ≤ δ1,

c2γ +β2, δ1 ≤ γ ≤ δ2,
...
cn−1γ +βn−1, δn−2 ≤ γ ≤ δn−1,

cnγ +βn, δn−1 ≤ γ,
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for some ci ∈ Z, βi ∈ Γ, δi ∈QΓ by Proposition 2.24. We may choose δn−1 such that cn−1 ̸= cn. We
claim that we must have cn = 0 and βn = v(d). If x+d

ϕ
/∈Mm,0, then v

(
0+d
ϕ(0)

)
= 0, so v(ϕ(0)) = v(d).

If d
ϕ
/∈Mm,0, we similarly have v(ϕ(0)) = v(d). Either way, we have v(ϕ(0)) = v(d). Since d ̸= 0,

we have that ϕ(0) ̸= 0. Then v(ϕ(a)) = v(ϕ(0)) for a ∈ K such that v(a) is sufficiently large. This
implies that minvalϕ(γ) is constant and equal to v(ϕ(0)) = v(d) for γ ∈ Γ sufficiently large by Lemma
2.26. Therefore, cn = 0 and βn = v(d).

We also claim that δn−1 ≥ v(d). If not, by Lemma 2.26, there exists b ∈V such that max{δn−1,0}<
v(b)< v(d) and v(ϕ(b)) = minvalϕ(v(b)) = v(d). However, this would imply that

v
(

b+d
ϕ(b)

)
= v(b)− v(d)< 0,

contradicting the fact that x+d
ϕ

∈ IntR(V ).
Next, we claim that cn−1 > cn = 0. If cn−1 < 0, we can find b ∈V such that max{δn−2,0}< v(b)<

δn−1 and v(ϕ(b)) = minvalϕ(v(b)) = cn−1v(b)+βn−1. Since cn−1δn−1 +βn−1 = v(d), we have that
v(ϕ(b))−v(d) = cn−1(v(b)−δn−1)> 0 as both cn−1 and v(b)−δn−1 are less than 0. This contradicts
the fact that d

ϕ
∈ IntR(V ).

Because Γ is divisible, we know that δn−1 ∈ Γ. Furthermore, since cn−1 > cn, by Lemma 2.28, there
exists some element a ∈ V so that we have v(a) = δn−1 and v(ϕ(a)) > minvalϕ(δn−1) = v(d). This
contradicts d

ϕ
∈ IntR(V ). Thus, the assumption that W is a valuation domain is false. □

We end this section by noting that for a valuation domain V such that V/m is algebraically closed
and m is not a principal ideal of V , even though IntR(V ) is not a Prüfer domain, there are subsets
E of the field of fractions K of V such that IntR(E,V ) is a Prüfer domain. For example, if E is a
singleton, then IntR(E,V ) is a valuation domain and therefore a Prüfer domain. Likewise, there are
other subsets E such that IntR(E,V ) is not a Prüfer domain. We can obtain from the proofs of Theorem
2.29 and Lemma 2.28 some conditions E such that IntR(E,V ) is not Prüfer. One case is indicated in
the following result.

Proposition 2.39. Suppose V/m is algebraically closed and m is not a principal ideal of V . Also
suppose that V is an essential valuation overring of a domain D centered on a maximal ideal of D.
Then IntR(D,V ) is not Prüfer.

Proof. Let v be the valuation associated with V and Γ the value group. This follows from the proofs of
Theorem 2.29 and Lemma 2.28 and the facts that V/m∼= D/(D∩m) and for every γ ∈ Γ, there exists
d ∈ D such that v(d) = γ . □

3. Integer-valued rational functions over Prüfer domains

Let D be a domain. We want to know what conditions on D makes IntR(D) a Prüfer domain. The
case for rings of integer-valued polynomials has been answered [Lop98, CCF00]. If IntR(D) is a Prüfer
domain, then D is a Prüfer domain since homomorphic images of Prüfer domains are Prüfer domains.
In [CL98], we see that if D is a monic or singular Prüfer domain, then IntR(D) is Prüfer. We want to
first investigate a few cases when D is a Prüfer domain but IntR(D) is not a Prüfer domain.
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One possible obstruction to IntR(E,D) being a Prüfer domain is an valuation overring V of D that
yields a domain IntR(E,V ) that is not Prüfer.

Proposition 3.1. Let D be a domain with field of fractions K and E ⊆ K a subset. Also let V be
a valuation overring of D such that IntR(E,D) and IntR(E,V ) have the same field of fractions. If
IntR(E,V ) is not Prüfer, then IntR(E,D) is not Prüfer either.

Proof. Since D ⊆ V , we have IntR(E,D) ⊆ IntR(E,V ), so IntR(E,V ) is an overring of IntR(E,D)
that is not Prüfer. Thus, IntR(E,D) is not Prüfer as every overring of a Prüfer domain is a Prüfer
domain. □

Corollary 3.2. Let D be a domain with field of fractions K. Suppose there exists a valuation overring
V of D centered on a maximal ideal of D such that the residue field of V is algebraically closed and the
maximal ideal of V is not principal. Then IntR(D) is not Prüfer.

Proof. Since D ⊆ IntR(D) and x ∈ IntR(D), we have that the field of fractions of IntR(D) is K(x).
Thus, IntR(D,V ) is an overring of IntR(D). Moreover, IntR(D,V ) is not Prüfer by Proposition 2.39, so
IntR(D) is not Prüfer either. □

Given a Prüfer domain D, obstructions to IntR(D) being a Prüfer domain do not necessarily come
locally from a single valuation overring. The obstruction can come from a collection of valuation
overrings that behave collectively like a valuation overring with algebraically closed residue field
and maximal ideal that is not principal, but individually, each valuation overring does not have both
algebraically closed residue field and maximal ideal that is not principal. The construction of such
domains is done via sequential domains, a generalization of sequence domains in [Lop97].

Definition 3.3. Let D be a domain with field of fractions K. We say that D is a sequential domain
if there exist for each i ∈ N\{0}, valuations vi : K → Γi ∪{∞}, where Γi is a totally ordered abelian
group, such that

• each associated valuation domain Vi is an essential overring of D such that D =
⋂

∞
i=1Vi,

• there is a common totally ordered abelian group Γ with embeddings Γi ↪→ Γ such that for each
d ∈ D, {vi(d)}∞

i=1 is eventually constant viewed as a sequence in Γ, and
• there exists ϖ ∈ D such that vi(ϖ) is not eventually 0.

Since vi(d) is eventually constant for all d ∈ D, there is valuation v∞ defined by v∞(d) = lim
i→∞

vi(d)

with associated valuation domain V∞ and maximal ideal m∞. We also have an embedding of the value
group Γ∞ ↪→ Γ.

We say a sequential domain D has the unbounded ramification property if for all γ ∈QΓ∞ with
γ > 0 and N ∈ N, there is some γ ′ ∈ Γn with γ ′ > 0 for some n ≥ N such that γ ′ < γ considered as
elements of QΓ.

From Theorem 2.29, we know that if V is a valuation domain with algebraically closed residue field
and maximal ideal that is not principal, then IntR(V ) is not a Prüfer domain. A sequential domain
can spread out the obstructions that make the ring of integer-valued rational functions not a Prüfer
domain. The unbounded ramification property mimics the property of having a maximal ideal that is
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not principal, even if all of the valuation overrings have a principal maximal ideal. There is an example
following the proposition illustrating this phenomenon.

The following proposition uses the notation from the definition of a sequential domain.

Proposition 3.4. Let D be a sequential domain with the unbounded ramification property. Also suppose
that V∞/m∞ is algebraically closed. Then IntR(D) is not a Prüfer domain.

Proof. We can assume that D is Prüfer since if D is not Prüfer, then IntR(D) is not Prüfer as well.
We will suppose that (x,ϖ) ⊆ IntR(D) is invertible for a contradiction. Then there exist ϕ,ψ ∈
(x,ϖ)−1 such that ϕ · x+ψ ·ϖ = 1. Let α := v∞(ϖ). There exists a ∈ D with v∞(a) = α such that
minvalϕ,v∞

(α) = v∞(ϕ(a)) and minvalψ,v∞
(α) = v∞(ψ(a)). Considering ϕ(x)x+ψ(x)ϖ = 1, we

deduce that
0 ≥ min{v∞(ϕ(a))+α,v∞(ψ(a))+α}.

Because ϕ,ψ ∈ (x,ϖ)−1, we have v∞(ϕ(a))+α,v∞(ψ(a))+α ≥ 0. This means that v∞(ϕ(a))+α = 0
or v∞(ψ(a))+α = 0. Either way, we have some ρ ∈ (x,ϖ)−1 such that minvalρ,v∞

(α) =−α .
Now for some ε ∈QΓ∞ with ε > 0, we have

minvalρ,v∞
(γ) =

{
cγ +β , α − ε < γ ≤ α,

c′γ +β ′, α ≤ γ < α + ε,

where c,c′ ∈ Z and β ,β ′ ∈ Γ. Since there are a finite number of coefficients which appear in ρ and
their values under vi is eventually constant and equal to their values under v∞, there exists N ∈ N
such that for all i ≥ N, we have minvalρ,v∞

= minvalρ,vi and additionally α ∈ Γi. Because D has the
unbounded ramification property, there exists some n ≥ N such that there exists δ ∈ Γn such that
0 < δ < ε . Then α −δ and α +δ are both in Γn. Since ρ ∈ (x,ϖ)−1 as a fractional ideal of IntR(D),
we have minvalρ,vn ≥ −min{minvalx,vn ,minvalϖ ,vn} on (Γn)≥0. Combining this with the fact that
α − ε < α −δ < α +δ < α + ε , we force c ≤−1 and c′ ≥ 0. Therefore, c′− c > 0. Also note that
minvalρ,vi(α) =−α for all i ≥ N.

Write ρ = f
g for some f ,g ∈ D[x]. Since V∞/m∞ is algebraically closed, loc f ,ϖ ,v∞

and locg,ϖ ,v∞

factor completely modulo m∞. This means we can write
f (ϖx)

t
= xm(x−u1)

e1 · · ·(x−ur)
er +h1(x),

g(ϖx)
t ′

= xm′
(x−u′1)

e′1 · · ·(x−ur)
e′r +h2(x),

for some t, t ′ ∈ K with v∞(t) = minval f ,v∞
(α), v∞(t ′) = minvalg,v∞

(α), u1, . . . ,ur ∈ D representing
distinct nonzero residues modulo D∩m∞, and h1,h2 ∈m∞[x]. We by Lemma 2.25 have that

(e′1 − e1)+ · · ·+(e′r − er) = c′− c > 0,

so without loss of generality by permuting the indices, we can assume that e′1 > e1. Write h1(x)=∑b jx j

and h2(x) = ∑b′jx
j with each b j and b′j being in m∞. Furthermore, we have some M ≥ N such that

for all i ≥ M, we get vi(uℓ) = 0 and vi(uℓ − uℓ′) = 0 for ℓ,ℓ′ distinct, vi(b j) = v∞(b j) > 0, and
vi(b′j) = v∞(b′j)> 0. Because D has the unbounded ramification property, there exists M′ ≥ M such
that there exists d ∈ D with 0 < vM′(d)< 1

e′1
min

j
{v∞(b j),v∞(b′j)}.
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Now we evaluate ρ at x = ϖ(d +u1). We get

ρ(ϖ(d +u1)) =
f (ϖ(d +u1))

g(ϖ(d +u1))

=
t
t ′
· de1(d +u1)

m(d +u1 −u2)
e2 · · ·(d +u1 −ur)

er +h1(d +u1)

de′1(d +u1)m′
(d +u1 −u2)

e′2 · · ·(d +u1 −ur)e′r +h2(d +u1)

We have that vM′(de1(d + u1)
m(d + u1 − u2)

e2 · · ·(d + u1 − ur)
er) = e1vM′(d) and vM′(h1(d + u1)) >

e1vM′(d) since each coefficient of the polynomial h1 has coefficients with vM′ valuation strictly greater
than e1vM′(d). Thus,

vM′(de1(d +u1)
m(d +u1 −u2)

e2 · · ·(d +u1 −ur)
er +h1(d +u1)) = e1vM′(d).

Similarly,

vM′(de′1(d +u1)
m′
(d +u1 −u2)

e′2 · · ·(d +u1 −ur)
e′r +h2(d +u1)) = e′1vM′(d).

This means that

vM′(ρ(ϖ(d +u1))) = vM′

( t
t ′

)
+ e1vM′(d)− e′1vM′(d)

= minvalρ,vM′ (α)+(e1 − e′1)vM′(d)

=−α +(e1 − e′1)vM′(d)

<−α.

This is a contradiction since ρ ·ϖ ∈ IntR(D) but vM′(ρ(ϖ(d +u1))ϖ)< 0. □

Example 3.5. Let k be an uncountable algebraically closed field and form the field K = k(s, t1, t2, . . .).
Take {α1,α2, . . .} ⊆ R>0 to be a Q-linearly independent subset. For each i ∈ N, define vi : K× →(

∑
j ̸=i

Zα j

)
⊕Z⊕ 1

i Z, ordered lexicographically, as the valuation such that

vi(k×) = {(0,0,0)},vi(ti) =
(

0,0,
1
i

)
,vi(s) = (0,1,0),vi(t j) = (α j,0,0),

for j ̸= i and vi( f ) for f ∈ k[s, t1, t2, . . . ] is the minimum of the vi values of each monomial of f .
Then each vi extends uniquely to K. Let Vi be the associated valuation domain of vi. Define the

domain D =
∞⋂

i=1
Vi. We see that D is a sequential domain with field of fractions K (since k ⊆ D and

s, t1, t2, · · · ∈ D) where each Vi has an algebraically closed residue field and a principal maximal ideal,

generated by ti. Additionally, each value group embeds naturally into
(

∞

∑
i=1

Zα j

)
⊕Z⊕Q, and v∞

gives rise to the associated valuation overring V∞, which also has algebraically closed residue field and
principal maximal ideal, generated by s. This domain D also has the unbounded ramification property,
since vi(ti) can be arbitrarily small. We also know that D is a Bézout domain and therefore a Prüfer
domain by [OR06, Theorem 6.6] since D is the intersection of countably many valuation domains
containing k, an uncountable subfield. However, by the previous proposition, IntR(D) is not a Prüfer
domain.
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Notice that each Vi for i ∈ N\{0} has a principal maximal ideal. The same holds true for V∞. Thus,
Corollary 3.2 cannot be used immediately to show that IntR(D) is not a Prüfer domain.

3.1. Intersection of monic and singular Prüfer domains. We know that if D is a Prüfer domain that
is monic or singular, then IntR(D) is also a Prüfer domain. We want to see if there are other instances
of Prüfer domains whose ring of integer-valued rational functions is also a Prüfer domain. For this
reason, we consider Prüfer domains D that are neither monic nor singular. Some domains of this form
are formed by the intersection of a monic Prüfer domain and a singular Prüfer domain.

We first consider a family of Prüfer domains obtained from intersecting a monic Prüfer domain and
a singular Prüfer domain with some extra conditions. We then give some corollaries with conditions
that are easier to verify. This includes the case of a finite intersection of valuation domains. Examples
will follow to showcase the different conditions.

Theorem 3.6. Let D be a Prüfer domain with K as the field of fractions. Suppose that D can be written
as D = D1 ∩D2, where D1 is a monic Prüfer overring of D and D2 is a singular Prüfer overring of D.
Suppose there exist n ∈ N, a collection {Vλ} of valuation overrings of D1, and a collection {Wµ} of
valuation overrings of D2 such that

• D1 =
⋂
λ

Vλ and D2 =
⋂
µ

Wµ ,

• the maximal ideal of Wµ is generated by some ϖµ ∈Wµ ,
• there exists some d ∈ D2 such that 0 < wµ(d)< nwµ(ϖµ) for all µ , where wµ is the valuation

corresponding to Wµ ,
• vλ (d) = 0 for all λ , where vλ is the valuation corresponding to Vλ , and
• there exist polynomials f ,g,h1,h2 ∈ D[x] such that

– f is monic of degree n such that f (D1)⊆ D×
1 ,

– g(D1) ⊆ D×
1 , g has leading coefficient d, degg = n, and wµ(g(a)) = wµ(dan) for all µ

and for all a ∈ K such that wµ(a)< 0,
– h1 is monic and degh1 = n, degh2 < n, and
– d f h1 +gh2 is unit-valued for each Vλ and Wµ .

Then IntR(E,D) is Prüfer domain with torsion Picard group for any subset E ⊆ K.

Proof. Fix a subset E ⊆ K.
Set θ(x) = d f (x)

g(x) . Fix µ . Let a ∈ K. If wµ(a) ≥ 0, then wµ((d f h1 +gh2)(a)) = 0, which implies
wµ((gh2)(a)) = 0 and thus wµ(g(a)) = 0. Then we calculate

wµ(θ(a)) =

{
wµ(d f (a))≥ 0, if wµ(a)≥ 0,
wµ(dan)−wµ(dan) = 0, if wµ(a)< 0.

Similarly, if we fixed λ , then since g(D1) ⊆ D×
1 and the leading coefficient of g is a unit of D1, we

know that g is unit-valued for Vλ [Lop94, Proposition 2.1]. Let a ∈ K, we have that

vλ (θ(a)) =

{
vλ (d f (a)) = 0, if vλ (a)≥ 0,
vλ (dan)− vλ (dan) = 0, if vλ (a)< 0.

This shows that θ ∈ IntR(K,D).
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Now let a,b ∈ K with b ̸= 0. We define

a⋄b := θ

(a
b

)
bnh1

(a
b

)
+bnh2

(a
b

)
.

We claim that v(a⋄b) = min{v(an),v(bn)} for any valuation v = vλ or v = wµ .
Fix a valuation v = vλ or v = wµ . Let a,b ∈ K with b ̸= 0. We have that

a⋄b
bn = θ

(a
b

)
h1

(a
b

)
+h2

(a
b

)
=

(
d f h1 +gh2

g

)(a
b

)
,

so if v(a)≥ v(b), then v(a⋄b) = v(bn) since both d f h1 +gh2 and g are unit-valued over the valuation
ring associated with v.

Now suppose that v(a)< v(b). Write h1(x) = a0+a1x+ · · ·+an−1xn−1+xn and h2(x) = b0+b1x+
· · ·+brxr with ai,bi ∈ D and some r < n. Then we have

a⋄b := θ

(a
b

)
(a0bn +a1abn−1 + · · ·+an−1an−1b+an)+(b0bn +b1abn−1 + · · ·+brarbn−r).

If v(a)< v(b), then v
(
θ
(a

b

))
= 0, so v(a⋄b) = v(an), as desired.

Now take ϕ,ψ ∈ IntR(E,D) with ψ ̸= 0. We claim that (ϕ,ψ)n is generated by

ρ := θ

(
ϕ

ψ

)
(a0ψ

n +a1ϕψ
n−1 + · · ·+an−1ϕ

n−1
ψ +ϕ

n)+(b0ψ
n +b1ϕψ

n−1 + · · ·+brϕ
r
ψ

n−r).

We see that ρ ∈ (ϕ,ψ)n since θ ∈ IntR(K,D) and ai,bi ∈ D. Furthermore, let j,k ∈ N such that
j+ k = n. Then for each a ∈ K such that ψ(a) ̸= 0, we have

v(ρ(a)) = v(ϕ(a)⋄ψ(a)) = min{v(ϕ(a))n,v(ψ(a))n} ≤ v(ϕ(a) j
ψ(a)k)

for all valuations v = vλ or wµ . This implies that ρ divides ϕ jψk in IntR(K,D) and therefore also in
IntR(E,D). Thus, (ϕ,ψ)n ⊆ (ρ). We then get that (ϕ,ψ)n = (ρ).

Since a power of an ideal of IntR(E,D) generated by two elements is principal, we also know that
this ideal is invertible. Thus, IntR(E,D) is a Prüfer domain.

Now let (ϕ1, . . . ,ϕm) be a finitely-generated, and thus invertible, ideal of IntR(E,D). We can ensure
that ϕ1, . . . ,ϕm are all nonzero. Then as before, for each a ∈ K except for the finitely many values such
that a is a pole for some ϕi, we see that

v((((ϕ1(a)⋄ϕ2(a))⋄ϕ3(a)n)⋄ϕ4(a)n2
)⋄ · · · ⋄ϕm(a)nm−2

) = min
i
{nm−1v(ϕi(a))}

for all valuations v= vλ or v=wµ . Using the same arguments as before, it follows that (ϕ1, . . . ,ϕm)
nm−1

is principal. Thus, the Picard group of IntR(E,D) is torsion. □

Corollary 3.7. Let D be a Prüfer domain with K as the field of fractions. Suppose that D can be
written as D = D1∩D2, where D1 is a monic Prüfer overring of D and D2 is a singular Prüfer overring
of D. Suppose there exist n ∈N, a collection {Vλ} of valuation overrings of D1, and a collection {Wµ}
of valuation overrings of D2 such that

• D1 =
⋂
λ

Vλ and D2 =
⋂
µ

Wµ ,

• the maximal ideal of Wµ is generated by some ϖµ ∈Wµ ,
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• there exists some d ∈ D2 such that 0 < wµ(d)< nwµ(ϖµ) for all µ , where wµ is the valuation
corresponding to Wµ ,

• vλ (d −1)> 0 for all λ , where vλ is the valuation corresponding to Vλ , and
• there exist a monic polynomial f ∈ D[x] of degree n such that f (D1)⊆ D×

1 and f (0) ∈ D×.

Then IntR(E,D) is Prüfer domain with torsion Picard group for any subset E ⊆ K.

Proof. We verify the conditions of Theorem 3.6.
We see that vλ (d) = 0 for all λ from the fact that vλ (d − 1) > 0. Furthermore, g(x) := d( f (x)−

f (0)) + f (0) is unit-valued over D1. This is because for any a ∈ D1 and any λ , we have that
vλ (g(a)− f (a)) = vλ ((d − 1)( f (a)− f (0))) > 0, so vλ (g(a)) = vλ ( f (a)) = 0. Observe that the
leading coefficient of g is d. Also, fix a µ and let a ∈ K such that wµ(a) < 0. Then wµ(g(a)) =
wµ(d( f (a)− f (0))+ f (0)) = wµ(dan) since wµ( f (a)− f (0)) = wµ(an).

Lastly, we set h1(x) := f (x)− f (0) and h2(x) := f (0). We have n = degh1 > degh2 and h1 is monic.
Next, we must check that d f h1 +gh2 is unit-valued for all Vλ and all Wµ . We have

(d f h1 +gh2)(x) = d f (x)( f (x)− f (0))+(d( f (x)− f (0))+ f (0)) f (0)

= d f (x)2 −d f (x) f (0)+d f (x) f (0)−d f (0)2 + f (0)2

= d f (x)2 −d f (0)2 + f (0)2.

For any a ∈ D, we have wµ((d f h1 +gh2)(a)) = wµ( f (0)2) = 0 for all µ and

vλ ((d f h1 +gh2)(a)− f (a)2) = vλ ((d −1)( f (a)2 − f (0)))> 0

so vλ ((d f h1 +gh2)(a)) = 0 for all λ . The domain D satisfies all of the hypotheses of Theorem 3.6, so
IntR(E,D) is Prüfer domain with torsion Picard group for any subset E ⊆ K. □

The intersection of finitely many valuation domains with the same field of fractions is a Prüfer
domain [Gil92, Theorem 22.8]. If these valuation domains are pairwise independent, we many use
the approximation theorem for independent valuations [Gil92, Theorem 22.9] to obtain the following
result.

Corollary 3.8. Let V1, . . . ,Vr be pairwise independent valuation rings on the field K. Suppose that
each Vi has a principal maximal ideal or a residue field that is not algebraically closed and set
D =V1 ∩·· ·∩Vn. Then IntR(E,D) is a Prüfer domain with torsion Picard group for every subset E of
K.

Proof. We can order the indices so that V1, . . . ,Vs for some s ≤ r are such that for each i = 1, . . . ,s, the
residue field of Vi is not algebraically closed and the residue fields for Vs+1, . . . ,Vr are algebraically
closed. For i ≤ s, this means there is some monic nonconstant unit valued polynomial fi for Vi. Taking
appropriate powers of each of the fi, we can assume that all of the fi have the same degree n. Now for
each i = 1, . . . ,s, write

fi(x) = xn +
n−1

∑
j=0

ai jx j,
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where each ai j ∈Vi. Then by the approximation theorem for pairwise independent valuations, we have
that for each j = 0,1, . . . ,n−1 an element A j ∈ K such that

vi(A j −ai j)> 0 for all i = 1, . . . ,s and vi(A j) = 0 for all i > s,

where vi denotes the valuation corresponding to Vi. Form

F(x) := xn +
n−1

∑
j=0

A jx j.

We claim that F ∈ D[x] is unit-valued for D1 :=V1 ∩·· ·∩Vs. Let a ∈ D1 and let i ∈ {1, . . . ,s}. Then

vi(F(a)− fi(a)) = vi

(
n−1

∑
j=0

(A j −ai j)a j

)
> 0

and vi( fi(a)) = 0 imply that vi(F(a)) = 0. Therefore, F(a) ∈ D×
1 . Furthermore, F(0) = A0 and

vi(A0) = 0 for all i = 1, . . . ,r, so F(0) ∈ D×.
Now let D2 =Vs+1 ∩·· ·∩Vr. For i = s+1,s+2, . . . ,r, the residue field of Vi is algebraically closed

so the maximal ideal of Vi must be principal by hypothesis. Say the maximal ideal of Vi is generated by
some ϖi ∈Vi. Then by the approximation theorem again, we have some d ∈ K such that

vi(d −1)> 0 for i ≤ s and vi(d) = vi(ϖi) for i > s.

Then we verify that d ∈ D2 and 0 < vi(d) = vi(ϖi)< nvi(ϖ) for all i > s. This means D satisfies all of
the hypotheses of the previous corollary and thus IntR(E,D) is a Prüfer domain with torsion Picard
group for any subset E ⊆ K. □

Here is an example of a Prüfer domain D with a finite number of maximal ideals that is neither
singular nor monic. The previous corollary allows us to determine that IntR(E,D) is a Prüfer domain
for any subset E ⊆ K.

Example 3.9. Let K = k(s, t), where k is any real closed field. Also, let α ∈R with α > 0 be irrational.
Define a valuation v1 : K → Z[α]∪{∞} as follows. We first define v1 on k[s, t]\{0} by

v1
(
∑ai1i2si1t i2

)
= min{i1 + i2α | ai1i2 ̸= 0},

where ∑ai1i2si1t i2 ∈ k[s, t]\{0}. Then this function uniquely extends to a valuation on K.
Now we define a valuation v2 : K → Z⊕Z∪{∞}, ordered lexicographically. We first define another

valuation w2 : k(s) → Z∪{∞} as the valuation corresponding to the valuation ring k[s](s) so that
w2(s) = 1. Let ∆ := k[s](s)/sk[s](s), the residue field of k[s](s). Then define w′

2 : ∆(t)→ Z∪{∞} as the
valuation corresponding to ∆[t](t2+1) so that w′

2(t
2 +1) = 1. Now we can define v2 on k[s](s)[t]\{0}.

Let f (t) ∈ k[s](s)[t]. We write f (t) = dg(t) for some d ∈ k[s](s) and g(t) ∈ k[s](s)[t]\ sk[s](s)[t]. Now,
we have

v2( f ) = (w2(d),w′
2(g mod sk[s](s))),

which extends uniquely to a valuation on K.
Let V1 and V2 be the valuation rings corresponding to v1 and v2, respectively. Then V1 has residue

field that isomorphic to k, which is not algebraically closed, and the maximal ideal is not principal.
As for V2, the ring V2 has residue field isomorphic to k[t]/(t2 +1), which is algebraically closed, and
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the maximal ideal is principal. Therefore, D = V1 ∩V2 is a Prüfer domain that is neither monic nor
singular, but V1 and V2 are independent valuations on K, so IntR(E,D) is Prüfer for any subset E of K
by the previous corollary.

The next example is a Prüfer domain D that is not the intersection of finitely many valuation domains,
but we can use Corollary 3.7 to determine that IntR(E,D) is Prüfer. In the next two examples, we make
use of the fact that the intersection of a countable number of valuation domains with the same field
of fractions all containing a common uncountable field is a Bézout domain and thus a Prüfer domain
[OR06, Theorem 6.6].

Example 3.10. Let K = k(t1, t2, . . .), where k is an uncountable algebraically closed field. Also let
{α1,α2, . . .} ⊆ R>0 be a Q-linearly independent subset of R. For i ∈ N\{0}, we define

vi
(
∑ae1e2···t

e1
1 te2

2 · · ·
)
= min

{
∞

∑
j=2

e jαi+ j

∣∣∣∣∣ae1e2··· ̸= 0

}
,

wi
(
∑ae1e2···ae1e2···t

e1
1 (t2 +1)e2te3

3 te4
4 · · ·

)
= min

{(
∑
j ̸=2

e jαi+ j,e2

)∣∣∣∣∣ae1e2··· ̸= 0

}
,

where both sums on the left range over (e1,e2, . . .)∈
∞⊕
ℓ=1

N and each ae1e2··· ∈ k with all but finitely many

ae1e2··· are 0. The value group of each wi is

(
∑
j=2

Zαi+ j

)
⊕Z endowed with left-to-right lexicographic

ordering. These functions extend uniquely to valuations on K, since K is the field of fractions of
k[t1, t2, . . . ] = k[t1, t2 +1, t3, t4, . . . ]. Let Vi and Wi be the valuation domains corresponding to vi and wi,
respectively.

For the valuation vi : K →
∞

∑
j=2

Zαi+ j ∪{∞}, Vi has residue field isomorphic to k(t), which is not

algebraically closed, and the maximal ideal of Vi is not principal.

As for wi : K →

(
∑
j ̸=2

Zαi+ j

)
⊕Z∪{∞}, we have Wi having residue field isomorphic to k, which is

algebraically closed and the maximal ideal of Wi is principal, generated by t2 +1.

Set D1 :=
∞⋂

i=1
Vi. We know that D1 is a Prüfer domain since D1 is the intersection of countably many

valuation domains with a common uncountable subfield k. We have that x2 − (t1 +1) is unit valued for
D1, so D1 is monic. Furthermore, K is the field of fractions of D1 since k ⊆ D1 and t1, t2, · · · ∈ D1.

Set D2 :=
∞⋂

i=1
Wi. As with D1, we can verify that D2 is a Prüfer domain with field of fractions K. We

also have 0 < wi(t2 +1)< 2wi(t2 +1), so D2 is singular.
Now form D := D1 ∩D2. Since k ⊆ D and t1, t2, · · · ∈ D, we have that K is the field of fractions of

D as well. Note that D is also the intersection of countably many valuation domains with a common
uncountable subfield k, so D is Prüfer.

Now we verify the remaining conditions for D for Corollary 3.7. Here, we’ll use n = 2. We have
that f (x) := x2− (t1+1) ∈ D[x]. Also, vi(−(t1+1)) = 0 and wi(−(t1+1)) = 0 for all i, so f (0) ∈ D×.
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Plus, vi((t2 +1)−1) = vi(t2) = αi+2 > 0 for all i. Therefore, by the corollary, we have that IntR(E,D)
is Prüfer for any subset E of K.

The full power of Theorem 3.6 is used to determine that IntR(E,D) is Prüfer in the following
example.

Example 3.11. We let K = k(t1, t2, . . .), where k is an uncountable algebraically closed field. We also
take {α1,α2, . . .} ⊆ R>0 to be a Q-linearly independent subset of R. For i ∈ N\{0}, we define

vi
(
∑ae1e2···t

e1
1 te2

2 · · ·
)
= min

{
∞

∑
j=i+1

e jαi+ j

∣∣∣∣∣ae1e2··· ̸= 0

}
,

wi
(
∑ae1e2···t

e1
1 te2

2 · · ·
)
= min

{(
∞

∑
j=2

e jαi+ j,e1

)∣∣∣∣∣ae1e2··· ̸= 0

}
,

where both sums on the left range over (e1,e2, . . .)∈
∞⊕
ℓ=1

N and each ae1e2··· ∈ k with all but finitely many

ae1e2··· are 0. The value group of each wi is

(
∑
j=2

Zαi+ j

)
⊕Z endowed with left-to-right lexicographic

ordering. These functions extend uniquely to valuations on K. Let Vi and Wi be the valuation rings
corresponding to vi and wi, respectively.

For the valuation vi : K →
∞

∑
j=i+1

Zαi+ j ∪{∞}, Vi has residue field isomorphic to k(t1, . . . , ti), which

is not algebraically closed, and the maximal ideal of Vi is not principal.

As for wi : K →

(
∑
j=2

Zαi+ j

)
⊕Z∪{∞}, we have Wi having residue field isomorphic to k, which is

algebraically closed and the maximal ideal of Wi is principal, generated by t1.

Set D1 :=
∞⋂

i=1
Vi, D2 :=

∞⋂
i=1

Wi, and D := D1 ∩D2. Since D1,D2, and D are all countable intersections

of valuation domains all containing k, an uncountable field, we know that D1,D2, and D are all Prüfer
domains. Furthermore, t1, t2, . . . ,∈ D and k ⊆ D, so K is the field of fractions D1,D2, and D. We see
that x2 − t1 is unit-valued for D1, so D1 is monic. We also have 0 < wi(t1)< 2wi(t1), so D2 is singular.

There does not exist d ∈ D2 and n ∈ N such that 0 < wi(d)< nwi(t1) for all i and vi(d −1)> 0 for
all i. This is because there exists i large enough such that vi(d −1) = 0 for any choice of d. Therefore,
the conditions in Corollary 3.7 are not satisfied.

Nevertheless, we can use Theorem 3.6. Set n = 2,d = t1, f (x) = x2 − t1, g(x) = t1x2 −1, h1(x) = x2

and h2(x) = 1. We know that vi(t1) = 0 for all i. We verify that x2 − t1 is unit-valued over D1 since
x2 − t1 has no roots over the residue field k(t1, t2, . . . , ti) of Vi for any i. Similarly, g(x) is unit-valued
over D1 for the same reason. Also, degg = 2 and for all a ∈ K and i such that wi(g(a)))< 0, we have
wi(t1a2).

Lastly, we check that
d f h1 +gh2 = t1x4 +(t1 − t2

1)x
2 −1

is unit-valued over each Vi and each Wi. Fix an i. Let mi be the maximal ideal of Vi. Since Vi/mi is
isomorphic to k(t1, . . . , ti), we let v be the valuation corresponding to k(t2, . . . , ti)[t1](t1). If t1x4 +(t1 −

Submitted to Journal of Commutative Algebra - NOT THE PUBLISHED VERSION

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

20 Feb 2024 16:25:01 PST
220821-BaianLiu Version 4 - Submitted to J. Comm. Alg.



RING STRUCTURE OF INTEGER-VALUED RATIONAL FUNCTIONS 31

t2
1)x

2−1 mod mi has a root ξ , then v(ξ ) =− v(t1)
4 , which is impossible. Lastly, notice that d f h1+gh2

is equivalent to −1 modulo the maximal ideal of any Wi, which makes d f h1 +gh2 unit-valued for each
Wi. Thus, IntR(E,D) is Prüfer for any subset E of K by Theorem 3.6.
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Algebra 226 (2000), 765–787.
[Gil92] R. Gilmer, Multiplicative ideal theory, vol. 90, Queen’s Papers Pure Appl. Math., 1992.
[GM76] H. Gunji and D. L. McQuillan, On rings with a certain divisibility property, Michigan Math. J. 22 (1976), no. 4,

289–299.
[HO73] W. Heinzer and J. Ohm, An essential ring which is not a v-multiplication ring, Can. J. Math. 25 (1973), no. 4,

856–861.
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