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SOME TYPES OF CONVERGENCE OF
SEQUENCES OF REAL VALUED

FUNCTIONS

Abstract

Using the notions of uniform equal and uniform discrete convergence
for sequences of real valued functions, the classes of functions which are
uniform equal limits and uniform discrete limits of sequences of real val-
ued functions belonging to certain class are studied. Also, new types
of convergence of sequences of real valued functions, called α-uniform
equal, α-strong uniform equal and α-equal are defined and studied. Us-
ing α-uniform equal convergence, a characterization of compact metric
space is obtained.

1 Introduction

In recent papers [8] and [9], Papanastassiou has defined and studied the notions
of uniform equal convergence and uniform discrete convergence for sequences of
real valued functions. Using these convergences the author has obtained some
results in measure theory. It is observed that uniform discrete convergence
is stronger than uniform equal convergence as well as discrete convergence
defined in [4]. On the other hand, uniform equal convergence is weaker than
uniform convergence and stronger than equal convergence defined by Császár
and Laczkovich in [4]. In the present paper we study the properties of classes
of functions which are uniform equal limits and uniform discrete limits of
sequences of functions belonging to a particular class. We also define and study
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α-uniform equal convergence, α-strong uniform equal convergence and α-equal
convergence which are stronger than α- convergence (known as continuous
convergence [10]) and obtain applications of our results in metric spaces.

Section 2 contains notation and terminology used in subsequent sections.
In Section 3, we study the classes Φu.e. and Φu.d. consisting respectively of the
real-valued functions on a non-empty set X which are uniform equal limits
and uniform discrete limits of sequences of functions in a particular class Φ
(e.g. Theorems 3.6 and 3.8).

The notion of α-convergence (known as continuous convergence) turned
out to be useful for characterizing compactness in metric spaces ([7], Theorem
3.2, p. 129). We recall the definition of α-convergence.

Let X be a metric space and f, fn, n ∈ N be real-valued functions defined
on X. Then (fn) α-converges to f (written as fn

α→ f) if for any x ∈ X
and for any sequence (xn) of points of X converging to x, (fn(xn)) converges
to f(x). It is clear from the definition that this convergence is stronger than
pointwise convergence. On the other hand, if the limit function f is continuous,
then this convergence is weaker than uniform convergence.

In Section 4, we define a new type of convergence called α-uniform equal
convergence (α-u.e. for short) which turns out to be stronger than uniform
equal convergence as well as α-convergence. We investigate properties of this
convergence and obtain a necessary and sufficient condition for a metric space
to be compact in terms of it. We also define and study a notion, stronger than
α-u.e. convergence, called α-strong uniform equal convergence (α-s.u.e.
for short).

In Section 5, we introduce the notion of α-equal convergence which is
weaker than α-uniform equal convergence and stronger than equal as well as α-
convergence. We study properties of this convergence. We do the comparative
study of all these types of convergences. We end the section with some open
problems concerning these convergences.

2 Notation and Terminology

By N, we mean the set of all natural numbers and by R, we mean the set of
all real numbers. If Γ is a set, then |Γ| denotes the cardinality of Γ. If x ∈ R,
then [x] denotes the integer part of x.

Let X be a non-empty set. By a function on X, we mean a real valued
function on X. Let Φ be an arbitrary class of functions defined on X. Then
we have the following definitions.

Definition 2.1. A sequence of functions (fn) in Φ is said to converge uni-
formly equally to a function f in Φ (written as fn

u.e.→ f) if there exists a
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sequence (εn)n∈N of positive reals converging to zero and a natural number n0

such that the cardinality of the set {n ∈ N : |fn(x) − f(x)| ≥ εn} is at most
n0, for each x ∈ X [8].

Definition 2.2. A sequence of functions (fn) in Φ is said to converge uni-

formly discretely to a function f in Φ (written as fn
u.d.→ f) if there exists a

natural number n0 such that the cardinality of the set {n ∈ N : |fn(x)−f(x)| >
0} is at most n0, for each x ∈ X (see [9]).

We denote by Φu.e., the set of all functions on X which are uniform equal
limits of sequences of functions in Φ. Similarly Φu.d. denotes the set of all
functions which are uniform discrete limits of sequences of functions in Φ.

Note 2.3. One can observe that if f ∈ Φu.e., then for any sequence (λn)n∈N
of positive reals converging to zero, there exists a sequence of functions in Φ
which converges uniformly equally to f with witnessing sequence (λn)n∈N.

Definition 2.4. A sequence of functions (fn) in Φ is said to converge
equally to f (written as fn

e.→ f) if there exists a sequence (εn)n∈N of posi-
tive reals converging to zero such that, for each x ∈ X, there exists a natural
number n(x) satisfying |fn(x) − f(x)| < εn, for each n ≥ n(x). Also, (fn) is
said to converge discretely to a function f in Φ (written as fn

d.→ f) if, for
every x ∈ X, there exists n(x) ∈ N such that f(x) = fn(x) for all n ≥ n(x)
[4].

Note 2.5. For a sequence of funtions in Φ, it is clear that we have the impli-
cations: uniform convergence implies uniform equal convergence, and uniform
equal convergence implies equal convergence. On the other hand uniform dis-
crete convergence implies both discrete and uniform equal convergence. The

symbol fn

β

6→ f means that (fn) does not converge to f in the respective
β-convergence.

Example 2.6. The following four examples show that the converse of each of
the above implications fail.

(i) Let fn(x) = xn for x ∈ [0, 1). Then the sequence (fn) converges equally
to the zero function on [0, 1) but not uniformly equally. (Refer to Exam-
ple 4.9)

(ii) Let fn be the piecewise linear function supported on [n − 1, n + 1 + 1
n ]

and given by

fn(x) =


x + 1− n for x ∈ [n− 1, n]
1 for x ∈ [n, n + 1

n ]
n + 1 + 1

n − x for x ∈ [n + 1
n , n + 1 + 1

n ].
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Then the sequence (fn) of continuous functions satisfies ‖fn‖∞ = 1 for
each n ∈ N, and therefore does not converge uniformly to the zero func-
tion. On the other hand, it converges uniformly equally to the zero
function. In fact, if (εn)n∈N is a null sequence of positive reals, then we
have

|{n ∈ N : fn(x) ≥ εn| ≤ 3 for each x ∈ R.

(iii) Let 0 < δ < 1 and fn(x) = xn for x ∈ [0, δ]. Then the sequence
(fn) converges uniformly equally to the zero function on [0, δ] but not
uniformly discretely, since the set {n ∈ N : δn > 0} is unbounded [9].

(iv) Let

fn(x) =


0 for x ∈ (−∞, n− 1]
x− n + 1 for x ∈ [n− 1, n]
1 for x ∈ [n, +∞).

Then the sequence (fn) converges discretely to the zero function on R
but not uniformly discretely [9].

For the function class Φ on X, we have the following definitions [5].

Definition 2.7. (a) Φ is called a lattice if Φ contains all constants and
f, g ∈ Φ implies max(f, g) ∈ Φ and min(f, g) ∈ Φ.
(b) Φ is called a translation lattice if it is a lattice and f ∈ Φ, c ∈ R implies
f + c ∈ Φ.
(c) Φ is called a congruence lattice if it is a translation lattice and f ∈ Φ ⇒
−f ∈ Φ.
(d) Φ is called a weakly affine lattice if it is a congruence lattice and there
is a set C ⊂ (0,∞) such that C is not bounded and f ∈ Φ, c ∈ C implies
cf ∈ Φ.
(e) Φ is called an affine lattice if it is a congruence lattice and f ∈ Φ, c ∈ R
implies cf ∈ Φ.
(f) Φ is called a subtractive lattice if it is a lattice and f, g ∈ Φ implies
(f − g) ∈ Φ.
(g) Φ is called an ordinary class if it is a subtractive lattice, f, g ∈ Φ implies
f · g ∈ Φ and f ∈ Φ, f(x) 6= 0, for all x ∈ X implies 1/f ∈ Φ.
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3 On the Classes of Uniform Equal and Uniform Discrete
Limits

We first observe the following equivalent condition for the uniform equal con-
vergence.

Theorem 3.1. Let fn, f : X → R, n ∈ N. Then fn
u.e.→ f if and only

if there exists an unbounded sequence (ρn)n∈N of positive integers such that
ρn|fn − f | u.e.→ 0.

Proof. Suppose fn
u.e→ f . Then there exists a sequence (εn)n∈N of positive

reals converging to zero and n0 ∈ N such that

|{n ∈ N : |fn(x)− f(x)| ≥ εn}| ≤ n0, for each x ∈ X.

Note that

|{n ∈ N : ρn|fn(x)− f(x)| ≥
√

εn}| ≤ n0, for each x ∈ X,

where (ρn) =
([

1√
εn

])
, is an unbounded sequence of positive integers and

hence ρn|fn − f | u.e.→ 0.

Conversely, if ρn|fn − f | u.e.→ 0, where (ρn) is an unbounded sequence of
positive integers, then there exists a sequence (λn) of positive reals converging
to zero and n0 ∈ N such that

|{n ∈ N : ρn|fn(x)− f(x)| ≥ λn}| ≤ n0, for each x ∈ X.

For (θn) =
(

λn

ρn

)
→ 0, we have

|{n ∈ N : |fn(x)− f(x)| ≥ θn}| ≤ n0, for each x ∈ X

and hence fn
u.e.→ f with witnessing sequence (θn).

The following result describes some properties the class Φu.e. must have if
the class Φ has the properties.

Theorem 3.2. Let Φ be a class of functions on X. If Φ is a lattice, a trans-
lation latice, a congruence lattice, a weakly affine lattice, an affine lattice or a
subtractive lattice, then so is Φu.e..

Proof. Suppose Φ is a lattice. Since Φ contains constant functions, Φu.e

contains constant functions. By definition it follows that if fn
u.e.→ f , then
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|fn|
u.e.→ |f |. Moreover, as observed in [8], if fn

u.e.→ f , gn
u.e.→ g and α, β ∈ R

then αfn +βgn
u.e.→ αf +βg. Hence if f, g ∈ Φu.e., fn

u.e.→ f and gn
u.e.→ g, then(

fn + gn

2

)
+
|fn − gn|

2
u.e.→ f + g

2
+
|f − g|

2
= max(f, g)

which implies that max(f, g) ∈ Φu.e.. Similarly min(f, g) ∈ Φu.e.. Thus Φu.e.

is a lattice.

It is easy to observe that if Φ is a translation, a congruence, a weakly affine,
an affine or a subtractive lattice, then so is Φu.e..

We first observe the following Lemmas.

Lemma 3.3. Let fn : X → R, n ∈ N. If fn
u.e.→ 0, then f2

n
u.e.→ 0.

Proof. If (λn)n∈N is witnessing sequence for uniform equal convergence of
(fn) to zero, then (λ2

n) is witnessing sequence for uniform equal convergence
of (f2

n) to zero.

Lemma 3.4. Let fn, f : X → R n ∈ N. If f is bounded and fn
u.e.→ f . Then

fn · f
u.e.→ f2.

Proof. Let M be a positive real number such that |f(x)| ≤ M , for each
x ∈ X. Since fn

u.e.→ f , there exists a sequence (εn)n∈N of positive reals
converging to zero and n0 ∈ N such that

|{n ∈ N : |fn(x)− f(x)| ≥ εn}| ≤ n0, for each x ∈ X.

Hence

|{n ∈ N : |(fn · f)(x)− f2(x)| ≥ εn ·M}| ≤ n0, for each x ∈ X.

Thus fn · f
u.e.→ f2.

Using the above two lemmas, we obtain the following result regarding
product of uniform equal limits.

Theorem 3.5. Let f, g : X → R be bounded functions and fn, gn : X → R,
n ∈ N be such that fn

u.e.→ f and gn
u.e.→ g. Then fn · gn

u.e.→ f · g.

Proof. Since fn
u.e.→ f and gn

u.e.→ g, fn + gn
u.e.→ f + g and fn − gn

u.e.→ f − g.
Now using Lemmas 3.3 and 3.4, we get

fn · gn =
(fn + gn)2 − (fn − gn)2

4
u.e.→ (f + g)2 − (f − g)2

4
= f · g.
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Theorem 3.6. Let Φ be an ordinary class of functions on X. Let f ∈ Φu.e.

be bounded and such that f(x) 6= 0 for each x ∈ X. If 1
f is bounded on X,

then 1
f ∈ Φu.e..

Proof. Let λ be such that f2(x) > λ > 0 for each x ∈ X. Since f ∈ Φu.e.

and f is bounded, by Theorem 3.5, f2 ∈ Φu.e. and hence by Note 2.3, there
exists fn ∈ Φ, n ∈ N and n0 ∈ N such that

|{n ∈ N : |fn(x)− f2(x)| ≥ 1
n3
}| ≤ n0, for each x ∈ X.

Let gn(x) = max{fn(x), 1
n}, x ∈ X and n ∈ N. Then gn ∈ Φ for each n ∈ N.

Note that

|{n ∈ N : gn(x) = fn(x) and |gn(x)− f2(x)| ≥ 1
n3
}| ≤ n0

and
|{n ∈ N : gn(x) =

1
n

and |gn(x)− f2(x)| ≥ 1
n3
}| ≤ n∗ + n0,

where n∗ =
[

1
λ

]
+ 1.

Using the fact that,

{n ∈ N : |gn(x)− f2(x)| ≥ 1
n3
}

={n ∈ N : gn(x) = fn(x) and |gn(x)− f2(x)| ≥ 1
n3
}

∪ {n ∈ N : gn(x) =
1
n

and |gn(x)− f2(x)| ≥ 1
n3
},

we get,

|{n ∈ N : |gn(x)− f2(x)| ≥ 1
n3
}| ≤ n0 + (n0 + n∗) ≡ n1, for each x ∈ X.

Therefore

|{n ∈ N : | 1
gn(x)

− 1
f2(x)

| ≥ 1
n3

· n · 1
λ
}

= |{n ∈ N :
|gn(x)− f2(x)|
|gn(x)||f2(x)|

≥ 1
n3

· n · 1
λ
}|

≤ |{n ∈ N : |gn(x)− f2(x)| ≥ 1
n3
}| ≤ n1, for each x ∈ X.
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Thus f−2 ∈ Φu.e and so f · f−2 = 1
f ∈ Φu.e..

Now, we study the properties of class Φu.d. of uniform discrete limits of
sequence of functions in a certain function class Φ.

The following result follows from definition.

Theorem 3.7. If Φ is a lattice, a translation lattice, a congruence lattice, a
weakly affine lattice, an affine lattice or a subtractive lattice, then so is Φu.d.

We have the following result for a function class Φ which is an ordinary
class.

Theorem 3.8. Let Φ be an ordinary class of functions on X. Then f, g ∈
Φu.d. implies f · g ∈ Φu.d.. Also, if f ∈ Φu.d. is such that f(x) 6= 0 for each
x ∈ X and 1

f bounded on X then 1
f ∈ Φu.d..

Proof. Let f, g ∈ Φu.d.. Then there exist sequences (fn) and (gn) in Φ such
that fn

u.d.→ f , gn
u.d.→ g. It follows from definition that fn · gn

u.d.→ f · g. Let f
satisfy the assumptions. Choose λ such that f2(x) > λ > 0 for each x ∈ X. We
first show that f−2 ∈ Φu.d.. Let fn ∈ Φ, n ∈ N, be such that fn

u.d.→ f . Since
Φ is an ordinary class, f2

n ∈ Φ, n ∈ N. Let (εn)n∈N be a sequence of positive
reals converging to zero and gn = max{f2

n, εn}. Then gn ∈ Φ. Since fn
u.d.→ f ,

therefore there exists n0 ∈ N satisfying |{n ∈ N : fn(x) 6= f(x)}| ≤ n0, for
each x ∈ X. Hence, |{n ∈ N : gn(x) 6= max{f2(x), εn}}| ≤ n0, for each x ∈ X,
which implies

|{n ∈ N :
1

gn(x)
6= 1

max{f2(x), εn}
}| ≤ n0, for each x ∈ X. (1)

Since (εn)n∈N converges to zero, there exists n∗ ∈ N satisfying εn < λ, for all
n ≥ n∗. Hence,

|{n ∈ N :
1

max{f2(x), εn}
6= 1

f2(x)
}| < n∗, for each x ∈ X. (2)

Now using equations (1) and (2) |{n ∈ N : 1
gn(x) 6=

1
f2(x)}| < n0 + n∗, for each

x ∈ X. Hence f−2 ∈ Φu.d., consequently f · f−2 = f−1 ∈ Φu.d..

4 α-Uniform Equal Convergence

The notion of α-convergence (known as continuous convergence) for sequences
of real valued functions on a metric space turned out to be useful for charac-
terizing compactness in metric spaces. It is known that if X is a metric space
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and f, fn : X → R, n ∈ N are such that fn
α→ f (i.e. (fn) α-converges to

f), then f is continuous. Also, if X is a compact metric space, then fn
α→ f

implies fn
u→ f , where u denotes uniform convergence (see [10]).

In [7], Holá and Šalát have obtained the following characterization of com-
pact metric spaces.

Theorem 4.1. A metric space (X, d) is compact if and only if for fn, f : X →
R, n ∈ N fn

α→ f ⇒ fn
u→ f .

We define here the notion of α-uniform equal convergence.

Definition 4.2. Let (X, d) be a metric space and f, fn : X → R, n ∈ N.
Then (fn) converges α-uniformly equally to f (written as fn

α-u.e.→ f) if
there exists a sequence (εn)n∈N of positive reals converging to zero and an
n0 ∈ N such that

|{n ∈ N : |fn(xn)− f(x)| ≥ εn}| ≤ n0 for each x ∈ X and xn → x.

Remark 4.3. It is clear from this definition that α-u.e. convergence implies
both α-convergence and u.e. convergence. However, the following examples
show that the converse of each of the above implications fails.

Example 4.4. (i) Let fn be the characteristic function of the interval [n, n+
1
n ], n ∈ N. Then fn

u.e.→ f ≡ 0. For if (εn)n∈N is a sequence of positive reals
converging to zero then |{n ∈ N : fn(x) ≥ εn}| ≤ 1, for each x ∈ R. Also
fn

α→ f . For if x0 ∈ R then there exists n∗ ∈ N such that for all n ≥ n∗

we have x0 < n and this implies fn(x0) = 0, for all n ≥ n∗. If xn → x0,
then given ε > 0, there exists n0(ε) ∈ N such that for all n ≥ n0(ε) we
have xn ∈ (x0 − ε, x0 + ε), but then fn(xn) = 0, for all n ≥ max{n∗, n0(ε)}.
Therefore fn(xn) → f(x0) = 0. Hence fn

α→ f .
Now we can observe that if

xn =

{
n + 1

2n if n ≤ m

x0 − 1
n if n > m

where m ∈ N is fixed and εn < 1 for all n ∈ N, then |{n ∈ N : |fn(xn)−f(x0)| ≥
εn}| = m. Hence (fn) does not converges α-uniformly equally to the zero
function.

(ii) Let (fn) be the sequence in example 2.6. (ii). Then as in the previous
example, we see that (fn) α- converges to the zero function but not α-uniformly
equally.
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In the above examples, in fact fn
u.d.→ 0. Therefore u.d.-convergence need

not imply α-u.e.-convergence. Moreover, the following example shows that
α-u.e. convergence also need not imply u.d.-convergence.

Example 4.5. Let fn : R → R be defined by fn(x) = 1
n , n ∈ N and f ≡ 0 on

R. Then note that fn
α-u.e.→ f but fn

u.d.

6→ f.

Remark 4.6. (i) Let (X, d) be a metric space and fn, f : X → R, n = 1, 2, . . .

such that fn
α-u.e.→ f . Then fn

α→ f and hence f is continuous even if the fn

are not (see [10]). Thus α-u.e. convergence implies that the limit function is
continuous.

(ii) In general, uniform convergence need not imply α-uniform equal con-
vergence. For example if f is a discontinuous function from X to R and fn = f ,
for all n ∈ N, then fn

u→ f but since f is discontinuous, fn does not converge
α-uniformly equally to f . However, we have the following result.

Theorem 4.7. Let X be a metric space and fn : X → R, n ∈ N. If the
sequence (fn) converges uniformly to the zero function, then the sequence (fn)
converges α-uniformly equally to the zero function.

Proof. Since fn
u→ 0, there exists a sequence (εn)n∈N of positive reals con-

verging to zero and n0 ∈ N such that |fn(x)| < εn, for all n ≥ n0 and for
each x ∈ X. This gives |{n ∈ N : |fn(xn)| ≥ εn}| ≤ n0 for every converging
sequence (xn) in X. Hence fn

α-u.e.→ 0.

In the converse direction, we have the following result.

Theorem 4.8. Let (X, d) be a compact metric space and fn, f : X → R,
n ∈ N. Then fn

α-u.e.→ f ⇒ fn
u→ f .

Proof. It follows from the fact that fn
α-u.e.→ f ⇒ fn

α→ f ⇒ fn
u→ f , as X

is a compact metric space (see [10]).

The following example shows that α-convergence need not imply uniform
equal convergence.

Example 4.9. Let fn : (0, 1) → R be defined by fn(x) = xn, n ∈ N and
f ≡ 0. Then fn

α→ f . Let 0 < δ < 1 and xn ∈ (0, 1) be such that xn → δ. If
δ < ϑ < 1, then there exists n0 ∈ N such that for all n ≥ n0 we have xn < ϑ.
But then fn(xn) = xn

n < ϑn. So fn(xn) → 0 = f(δ), since ϑn → 0. Hence

fn
α→ 0. However, fn

u.e.

6→ f . For if (εn)n∈N is a sequence of positive reals
converging to zero and 0 < ε < 1, then there exists n0 ∈ N such that for all
n ≥ n0, εn < ε. Consequently we have

{n ∈ N : xn ≥ ε} ∩ [n0,+∞) ⊂ {n ∈ N : xn ≥ εn} ∩ [n0,+∞).
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But the function nε(x) = |{n ∈ N : xn ≥ ε}|, x ∈ (0, 1) is unbounded and
therefore the function n(x) = |{n ∈ N : xn ≥ εn}|, x ∈ (0, 1) is unbounded.

Hence fn

u.e.

6→ f (see also [9]).

Note 4.10. (i) The previous example also shows that α-convergence need not
imply α-uniform equal convergence. In addition we have that the sequence
(fn) converges equally to 0 on (0, 1), since (0, 1) = ∪∞k=2[

1
k , 1 − 1

k ] and (fn)
converges uniformly to 0 on [ 1k , 1− 1

k ] for every k ∈ N −{1}. So we have here
a simple example which distinguishes α-convergence from α-uniformly equally
convergence, and at the same time the equal convergence from uniformly equal
convergence.

(ii) Examples in Remark 4.6 (ii) shows that uniform equal convergence

need not imply α-convergence (since f being discontinuous, fn

α

6→ f). Also,
the following example shows the same.

Example 4.11. Let

fn(x) =


1
n for x ∈ [0, 1

n ]
0 for x ∈ ( 1

n , 1)
1 for x = 1. n ∈ N

and f : [0, 1] → [0, 1] be defined by

f(x) =

{
1 for x = 1
0 otherwise.

It is easy to verify that fn
u→ f and hence fn

u.e.→ f but f being discontinuous

fn

α

6→ f .

We now obtain a characterization of compact metric spaces using α-uniform
equal convergence.

Theorem 4.12. A metric space (X, d) is compact if and only if the α-converg-
ence of a sequence (fn) of real valued functions defined on X to the zero
function implies the α-uniform equal convergence of the sequence (fn) to the
zero function.

Proof. If X is compact metric space, then by Theorem 4.1, fn
α→ 0 ⇒

fn
u→ 0 and hence by Theorem 4.7 fn

a-u.e.→ 0. Conversely, suppose (X, d)
is not a compact metric space. We first recall the construction of maps f∗p
in Theorem 3.1 in [7]. Since X is not compact, there exists a sequence (xk)
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of distinct points of X such that there exists no convergent subsequence of
(xk). Since every point of the set {x1, . . . xn, . . .} is an isolated point of the
set {x1, x2, . . . , xn, . . .}, there exist δk > 0, k = 1, 2, . . . such that δk → 0 as
k →∞ and the closed balls B[xk, δk] = {x ∈ X|d(x, xk) ≤ δk}, k = 1, 2, . . . are
pairwise disjoint. Then H = ∪∞k=1B[xk, δk] is a closed set. Define a sequence
(fp) of real valued functions on the set {x1, x2, . . . , xn, . . .} by f1(xn) = 0,
n = 1, 2, . . . and for p > 1, fp(xm) = (1 − 1/m)p−1 if 1 ≤ m ≤ p and
fp(xp+j) = fp(xp) for j = 1, 2, . . .. Define for p ∈ N, f∗p (x) = 0 if x 6∈ H
and f∗p (x) = fp(xj) · (δj − d(x, xj))/δj , if x ∈ B[xj , δj ] (j = 1, 2, . . .). Then
as proved in [7], f∗p

α→ 0. However, the fact that f∗p (xp) = (1 − 1
p )p−1 is

decreasing and converges to e−1, where e is Euler number, implies that (f∗p )
does not converge uniformly equally to the zero function. For if (εn)n∈N is
a null sequence of positive reals, then there exists n0 ∈ N such that, for all
n ≥ n0 we have εn < e−1. Let ε ∈ (εn0 , e

−1). Then for all p ∈ N,

|{n ∈ N : f∗n(xp) ≥ ε}| ≥ p− 2.

Also we have,

{n ∈ N, n ≥ n0 : f∗n(xp) ≥ ε} ⊂ {n ∈ N, n ≥ n0 : f∗n(xp) ≥ εn}.

Therefore for all p ∈ N

|{n ∈ N, n ≥ n0 : f∗n(xp) ≥ εn}| ≥ p− 2− n0.

Hence f∗p
u.e.

6→ 0. Now, since α-u.e. convergence implies u.e. convergence, we
have that the sequence (f∗p ) does not converges α-uniformly equally to the
zero function.

The following notion was introduced by A. Denjoy [6]. The series
∑∞

n=0 fn

of real-valued function converges pseudo-normally on a set X, if and only if
there exists a convergent series

∑∞
n=0 εn of positive reals such that for every

x ∈ X there exists an index kx such that |fk(x)| < εk for every k > kx. In
[3], the authors define a sequence (fn), of real valued functions, to converge
pseudo-normally to a real valued function f if there exists a sequence (εn)n∈N
of positive reals with

∑∞
n=1 εn < +∞ such that for each x ∈ X, there exists

n0(x) ∈ N satisfying |fn(x)− f(x)| ≤ εn for all n ≥ n0(x). The second-named
author of the present paper introduced in [8] a stronger notion of convergence,
called strong uniform equal, which is defined as follows.

Let fn, f : X → R, n = 1, 2, . . .. Then (fn) converges to f strongly
uniformly equally (written as fn

s.u.e.→ f), if there exists a sequence (εn)n∈N
of positive reals with

∑∞
1 εn < ∞ and n0 ∈ N such that

|{n ∈ N : |fn(x)− f(x)| ≥ εn}| ≤ n0, for each x ∈ X.
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From the definition it follows that strong uniform equal convergence is stronger
than uniform equal convergence as well as pseudo-normal convergence. How-
ever, the following examples show that they are not the same.

Example 4.13. (i) Let fn : R → R, n ∈ N be defined by fn(x) = 1
n , x ∈ R.

Then fn
u.e.→ 0 but fn

s.u.e.

6→ 0.
(ii) Let fn be the characteristic function of the interval [n,∞), n ∈ N.

Then (fn) converges pseudo-normally to f ≡ 0 on R but not strongly uniformly
equally.

Here we define the notion of α-strong uniform equal convergence.

Definition 4.14. We say that a sequence of real valued functions (fn) con-
verges α-strongly uniformly equally to a function f (written as fn

α-s.u.e.→
f), if there exists a convergent series

∑∞
n=0 εn of positive reals and an index

n0 ∈ N such that

|{n ∈ N : |fn(xn)− f(x)| ≥ εn}| ≤ n0, for every x ∈ X and xn → x.

Remark 4.15. It is clear that the notion of α-strong uniform equal conver-
gence is stronger than α-uniform equal convergence and strong uniform equal
convergence both.

The following examples distinguish these types of convergence.

Example 4.16. (i) Let fn(x) = 1
n , x ∈ R. Then fn

α-u.e.→ f ≡ 0 but

fn

α-s.u.e.
6→ f ≡ 0 (ii) Let fn be the characteristic function on [n, n + 1

n ],

n ∈ N and f ≡ 0 on R. Then fn
s.u.e.→ 0 but fn

α-s.u.e.

6→ 0.

We recall now the definition of strong uniform convergence defined in [8].
Let f, fn : X → R, n ∈ N. Then (fn) is said to converge strongly

uniformly to f (written as fn
s.u.→ f) on X, if and only if, there exists a

sequence of positive reals (εn) with
∑∞

n=1 εn < +∞ and an index n0 ∈ N such
that |fn(x)− f(x)| < εn, for all n ≥ n0 and for every x ∈ X.

Note that Example 4.16 (i) shows that s.u. convergence is stronger than
uniform convergence.

It is easy to observe the following result.

Theorem 4.17. Let fn : X → R, n = 1, 2, . . . and f : X → R be the zero
function such that fn

s.u.→ f . Then fn
α-s.u.e.→ f .
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5 α-Equal Convergence

We define the following convergence which is intermediate between α-u.e. con-
vergence and α convergence.

Definition 5.1. Let f, fn, n ∈ N be functions on X. We say that the sequence
(fn) converges α-equally to f (written as fn

α-e.→ f) if there exists a sequence
(εn)n∈N of positive reals converging to zero such that for each x ∈ X and
sequence (xn) of points of X such that xn → x, there exists a natural number
n0 ≡ n0(x, (xn)) satisfying |fn(xn)− f(x)| < εn for all n ≥ n0.

Remark 5.2. It follows from the definition that:

(i) α-equal convergence implies equal convergence.

(ii) If fn
α-e.→ f , then fn

α→ f .

(iii) If fn
α-u.e.→ f , then fn

α-e.→ f .

(iv) If fn
α-e.→ f , then f is continuous.

Example 5.3. We give some examples which distinguish all these types of
convergence.

(i) Let X = [0, 1] and fn(x) = xn, n ∈ N and f be defined by f(x) = 0, if
x ∈ [0, 1), f(x) = 1 if x = 1. Then fn

e→ f but (fn) does not converge
α-equally to f since f is not continuous.

(ii) In examples 4.4, fn
α-e.→ f but fn

α-u.e.

6→ f .

Note 5.4. The following figure shows the relation between all the convergences
discussed here. The numbers at the arrows refer to the examples showing that
those implications are not true.
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Note 5.5. We recall that a convergence structure is said to be an L-space if
every subsequence of a convergent sequence converges to the same limit and
if every constant sequence converges to its common value (compare [1]). Ac-
cording to Remark 1.2 (ii) in [8] , the space RX of all real valued functions
defined on X with uniform equal convergence is an L-space. Also, from the
definitions, it follows that the space RX with each of uniform discrete conver-
gence, α-uniform equal convergence, α-equal convergence and α-convergence
is an L-space.

Open Problems (i) Let X be a topological space. We call X an α-space if
whenever fn : X → R, n ∈ N, continuous, are such that fn

p.w.→ 0 then fn
α→ 0

and we call X a weak α-space if whenever fn
p.w.→ 0, where p.w. denotes

pointwise convergence, then there exists a subsequence say, (fnk
) of (fn) such

that fnk

α→ 0. Such kind of study has been done in [2]. Clearly an α-space
is a weak α-space and R with cocountable topology τc is an α-space. (For if
fn

p.w.→ 0 and xn → x0, x0 ∈ X, then there exists n0 ∈ N such that for all
n ≥ n0 xn = x0, and therefore fn(xn) = fn(x0) → 0 = f(x0).) It would be
interesting to study α-spaces, and in a similar way, spaces in which fn

p.w.→ 0
implies fn

α-e.→ 0 or fn
p.w.→ 0 implies fn

α-u.e.→ 0.
(ii) Characterize the topological spaces in which fn

α→ 0 implies fn
α-e→ 0,

where fn, n ∈ N are continuous. In a similar way, characterize spaces in which
fn

α→ 0 implies fn
α-u.e.→ 0. We recall that compact metric spaces are examples

of such spaces, as on a compact metric space fn
α→ 0 implies fn

α-u.e.→ 0.
(iii) Find a characterization of α-convergence, α-e. and α-u.e. convergence

analogous to the characterization of strong equal convergence obtained in [8].
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(iv) Finally, (in the usual notations) find the conditions under which

(a) Φα-u.e. = Φu.e.,

(b) Φα-u.e. = Φα,

(c) Φα-u.e. = Φα-s.u.e.,

(d) Φu.d. = Φu.e.,

(e) Φu.e. = Φe.
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[7] Ľ. Holá and T. Šalát, Graph convergence, uniform, quasi-uniform and
continuous convergence and some characterizations of compactness, Acta
Math. Univ. Comenian, 54–55 (1988), 121–132.



Convergence of Sequences of Real Valued Functions 59

[8] N. Papanastassiou, On a new type of convergence of sequences of func-
tions, submitted.

[9] N. Papanastassiou, Modes of convergence of real valued functions.
Preprint.

[10] S. Stoilov, Continuous convergence, Rev. Math. Pures Appl., 4 (1959),
341–344.


