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RECURSIVE LEAST SQUARES WITH LINEAR CONSTRAINTS

YUNMIN ZHU∗ AND X. RONG LI†

Abstract. Recursive Least Squares (RLS) algorithms have wide-spread applications in many

areas, such as real-time signal processing, control and communications. This paper shows that the

unique solutions to linear-equality constrained and the unconstrained LS problems, respectively,

always have exactly the same recursive form. Their only difference lies in the initial values. Based on

this, a recursive algorithm for the linear-inequality constrained LS problem is developed. It is shown

that these RLS solutions converge to the true parameter that satisfies the constraints as the data

size increases. A simple and easily implementable initialization of the RLS algorithm is proposed.

Its convergence to the exact LS solution and the true parameter is shown. The RLS algorithm, in a

theoretically equivalent form by a simple modification, is shown to be robust in that the constraints

are always guaranteed to be satisfied no matter how large the numerical errors are. Numerical

examples are provided to demonstrate the validity of the above results.

1. Introduction. The least squares (LS) approach has wide-spread applications

in many fields, such as statistics, numerical analysis, and engineering. Its great-

est progress in the 20th century was the development of the recursive least squares

(RLS) algorithm, which has made the LS method one of the few most important and

widely used approaches for real-time applications in such areas as signal and data

processing, communications and control systems. Considerable efforts and significant

achievements have been made in developing even more efficient RLS algorithms.

In many practical problems to which the LS method is applicable, the solutions

have to satisfy certain constraints. For this reason, the study of constrained LS

problems has received considerable attention. For example, four chapters of the book

[25] were dedicated to the LS problems with linear constraints. Various algorithms

have been developed for these constrained LS problems. To our knowledge, however,

recursive (and thus computationally efficient) LS algorithms for constrained problems

were not available prior to the work presented here.

In this paper, we first show that the solution to the linear LS problems with

linear-equality constraints and the unconstrained linear RLS solution have an identical
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recursive form. The two solutions differ only in that they correspond to different initial

conditions (initial solutions). Based on the above RLS solution for linear-equality

constraints, a recursive algorithm for the linear LS problems with linear-inequality

constraints is presented. Then, an easily implementable RLS algorithm for the linear

LS problems with linear constraints is proposed, along with its convergence to the

exact RLS solution. Both the exact and inexact RLS algorithms are shown to converge

to the true parameter under some assumptions. A numerically robust RLS algorithm

is presented which ensures that the constraints are satisfied even in the presence of

numerical errors. These results enable a solution to the linear LS problems with linear

constraints that is highly efficient and robust for real-time applications.

2. Problem Statement and Motivation. In many scientific and engineering

problems one has to solve the following minimization problem — the unconstrained

Least Squares (LS) problem:

(1) min
θ

Sn(θ) =

n∑

i=1

|yi − θ∗xi)|
2 = (Yn − θ∗Xn)(Yn − θ∗Xn)∗,

where yi ∈ C1 is a scalar; xi ∈ Cr and the estimated parameter θ ∈ Cr are r-

dimensional vectors; C1 and Cr denote complex number and complex vector space

of r dimension, respectively; the superscript “ * ” stands for complex conjugate and

transpose; and Yn and Xn are defined as

(2) Yn = [y1, y2, . . . , yn] ∈ C1×n, Xn = [x1, x2, . . . , xn] ∈ Cr×n.

This optimization problem can be found in various fields. Consider, for example, a

typical adaptive filtering problem described as follows [23]: Given a sequence of input

signals {xi}, and a desired response sequence {yi}, the objective is to identify a linear

FIR (finite impulse response) filter with coefficient vector θ of length r, such that

the filter’s response to the input sequence {xi} is in some sense close to the desired

response {yi}. Often the criterion for closeness is given by the sum of squares of the

differences between the actual and desired responses at different time instants. In this

case the problem formulation reduces to the above minimization problem, where yi is

the desired response at time i, xi = [xi, xi−1, ..., xi+1−r]
∗ and θ is the vector of tap

weights of the FIR filter.

In practice, it is often necessary to impose constraints on a LS solution. For exam-

ple, in curve fitting, inequality constraints may arise from such requirements as mono-

tonicity, nonnegativity, and convexity. Equality constraints may arise from the need

to guarantee continuity (and possibly smoothness) of the curves. Such constrained

optimization problems can be found in many application areas. For example, in some

adaptive filtering applications, such as minimum-variance distortionless response fil-

tering, it is desirable to design a linear filter that minimizes its average output power
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while maintaining its response to some specific frequencies of interest to be constant.

A spatial counterpart of the above temporal filtering problem is the adaptive beam-

forming, which ensures that the beamformer θ provides a constant gain A1θ = B1

along the direction A∗
1 of the desired signal and simultaneously nullify the direction

A∗
2 of the interference (i.e., A2θ = 0), where (A1 A2)

′ = A and (B1 B2)
′ = B (for

details see e.g., [34, 15, 23]). One popular class of such constraints is linear-equality

constraints; that is, the solution θ to (1) has to satisfy the following system of linear

algebraic equations

(3) Aθ = B,

where A ∈ Cd×r and B ∈ Cd are given matrices. Following [25], we will refer to this

LS problem with linear-equality constraints as the LSE problem.

When all of the above matrix spaces are restricted on the corresponding real

spaces, another popular constraint is linear-inequality constraint

(4) Aθ ≥ B,

where the inequality “≥ ” between two matrices is componentwise — the inequality

holds for each element. We will refer to this LS problem with linear-inequality con-

straints as the LSI problem. For example, in many estimation applications, it is

known that θ is nonnegative from its physical meaning. In the above beamforming

example, when a new interference comes in, such as in mobile communications, one

may have to change the original weight vector to reject it as much as possible and at

the same time do not make the original beam pattern changed too much. In this case,

one may optimize the weight vector θ so that the gain can change in a suitable range.

The preceding problem formulation is a linear-inequality constrained LS problem.

In fact, when A = 0, B = 0, constraints (3) and (4) vanish. In other words, the

unconstrained LS problem is a special case of the constrained LS problem with the

constraints [(3) or (4)] relaxed.

3. Previous Results. The solution of the above unconstrained LS problem for

θ using the data yi and xi through time n will be denoted by θn. It is well-known

that the unique minimum-norm LS solution to the unconstrained problem (1) is

(5) θn = (X∗
n)+Y ∗

n

where superscript “+” stands for the Moore-Penrose inverse. The unconstrained

problem (1) has a unique solution (i.e., the minimum-norm solution (5) becomes the

unique solution), given by

(6) θn = (XnX∗
n)−1XnY ∗

n
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if and only if XnX∗
n is nonsingular. This is a batch solution and is thus not suitable

for real-time applications because its computational complexity increases with n.

Important progress was made half a century ago when Plackett [29] and others

(such as Woodbury [36]) demonstrated that if XnX∗
n is nonsingular, the unconstrained

problem (1) has the following recursive solution

θn+1 = θn + Kn+1(yn+1 − θ∗nxn+1)
∗,(7)

Kn+1 = Pnxn+1/(1 + x∗
n+1Pnxn+1),(8)

Pn+1
def
= (Xn+1X

∗
n+1)

−1 = (P−1
n + xn+1x

∗
n+1)

−1 = (I − Kn+1x
∗
n+1)Pn,(9)

where the last equality in (9) follows from the Matrix Inversion Lemma [3, 4]:

(10) (A + BD−1B∗)−1 = A−1 − A−1B(D + B∗A−1B)−1B∗A−1,

where A and D are both Hermitian positive definite matrices. The recursive equation

(9) plays a crucial role in the recursion (7)–(9), and generally, when XnX∗
n is singular,

no recursion similar to (7)–(9) is available.

This recursive LS (RLS) solution greatly promotes the application of LS method in

many fields where real-time processing plays a key role, including signal processing,

communications and control (see, e.g., [17, 7, 6, 27, 23, 26]). Compared with the

batch solution (6), the recursive solution (7)–(9) offers important advantages: It is

in a recursive form, free of matrix inversion operation, and thus has a much reduced

computational complexity. As such, it is much more suitable for real-time applications

because the number of algebraic operations and required memory locations is reduced

from O(r3) (order of r3) to O(r2) per cycle (i.e., per new data point). Moreover,

even more efficient algorithms (known as “fast algorithms”) have been developed

based on recursion (7)–(9), such as [28, 10], which further reduce the computational

complexity to O(r) by taking advantage of some properties (e.g., Toeplitz) of the

matrices involved. A major drawback of these fast algorithms is that they have poor

numerical properties. This drawback has been eliminated in the numerically robust

fast algorithms developed more recently, such as [30, 9, 8], based on QR decomposition

with Givens rotations or the Householder transformation. Mapping of RLS algorithms

onto (e.g., systolic) array processors to further reduce the latency in the processing

has received considerable attention in recent years (see, e.g., [23]).

The practical importance of developing efficient algorithms for solving LS prob-

lems has been and will continue to be the thrust for the past and future research

efforts. The progress in the study of constrained LS problems has been less satis-

factory. The most popular method in engineering for the LSE problem [i.e., with

linear-equality constraint (3)] is based on the use of Lagrange multipliers. It converts
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the constrained problem to an unconstrained problem of a higher dimension. With-

out any additional assumption on matrix A, however, it can provide in general only

necessary conditions for the solution, even when XnX∗
n is nonsingular.

By using an orthogonal basis of the null space of A, the LSE problem has been

shown [21, 25] to have a unique solution

(11) θn = A+B + (X∗
nP )+(Y ∗

n − X∗
nA+B),

if and only if
(

A
X∗

n

)
has full rank r and (3) is consistent, otherwise (11) is the unique

solution of minimum norm.

The LSE problem can also be solved by direct elimination [25, 5]: Express some

elements of θn in terms of the remaining elements using the linear-equality constraint

(3) if it is consistent and underdetermined. Then the constrained problem is reduced

to an unconstrained LS problem for the remaining elements. In the weighting method

[25, 5, 16, 1], the original LS cost function is augmented by an additional one with

a large weight that corresponds to the LS formulation of the linear constraints. This

formulation is equivalent to the original one only when the weight approaches infinity,

which leads to numerical problems. Another method is based on unconstrained RLS

algorithms combined with projections onto the constrained sets, such as in [14, 23],

which has a heavy computational burden. Other methods include the use of gen-

eralized singular value decomposition, updating [4, 5], QR decomposition and other

numerical method based algorithms (see, e.g., [12, 2, 13, 24, 33, 19, 11, 18, 5, 23]),

which are nonrecursive in nature (albeit iterative for some of them) and thus are less

attractive computationally.

A variety of methods have been developed for solving the LS problem with linear-

inequality constraints numerically (see, e.g., [32, 20, 22, 5]). Most of them are based

on constrained quadratic programming, including the dual and primal methods, in

particular, the active set method [5].

None of the above algorithms for constrained LS problems is recursive in nature

and thus they are not suitable for real-time applications. To our knowledge, the fea-

sible directions based numerical algorithm of [31] was the only one that utilizes the

old solution to compute the new solution when new data are available, where the old

feasible tableau is used to obtained the new tableau by a procedure (but the procedure

to find the LS solution from the tableau is still not recursive). It is thus important

and natural to look for constrained LS solutions that can be calculated recursively.

It would be ideal if the recursion were identical to (7)–(9) since were this the case,

it would facilitate further development greatly — for example, some of the fast RLS

algorithms developed for the unconstrained LS problems might be applicable to con-

strained LS problems with little modification and thus the computational complexity



292 YUNMIN ZHU AND X. RONG LI

could be reduced to O(r) per cycle immediately.

In this paper, we show in Section 4 that the solution to the LSE problem (i.e., with

linear-equality constraints) indeed can be calculated in exactly the same recursion as

(7)–(9) for the unconstrained problem. The only difference between the constrained

and unconstrained RLS solutions lies in their initial values. Section 5 presents a robust

RLS solution that is guaranteed to satisfy the constraints no matter how large the

computational errors of the recursive quantities are. Since the LS solution subject to

a linear-inequality constraint is either the corresponding unconstrained LS solution

(when it is inside the constraint set) or the corresponding linear-equality LS solution

(if on the boundary of the constraint set), the above recursive solutions are extended

in Section 6 to linear-inequality constraint case. This extension takes advantage of

the fact that the LSE and unconstrained solutions have the same recursion. We

propose a simple initialization for the RLS algorithm for linear constraints in Section

7, and show in Section 8 that the difference between the RLS algorithm initialized

this way and the exact RLS solution converges to zero as more and more data are

used. We also show that the exact and inexact RLS algorithms converge, under some

assumptions, to the true parameter if it satisfies the constraints. Numerical examples

that support the theoretical results are given in Section 9. Various extensions of the

results presented are discussed in Section 10. Conclusions are provided in Section 11

and proofs of all theorems are given in the Appendix.

4. Linear-Equality Constraints. Throughout this section we will not consider

the two trivial cases where (3) has either a unique solution or no solution, since in these

two cases, the LSE problem has the same unique solution or no solution, respectively.

In other words, we assume that (3) is consistent and underdetermined. Hence, by the

MP inverse theory [3], we have

(12) AA+B = B, A+A 6= I,

and the general solution to (3) is given by

(13) θ = A+B + (I − A+A)ξ,

where ξ is an arbitrary vector in Cr. Let

(14) P = I − A+A.

Clearly, P is an orthogonal projector (since P 2 = P = P ∗) and not of full rank

provided A 6= 0.

By definition, the solution to the LSE problem is the vector θ satisfying the

constraints (3) that minimizes the cost function Sn(θ) of (1); that is, it is one of the

solutions given by (13) that minimizes (1). This idea leads to the following theorem
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in which a general solution to the LSE problem is given without any assumption on

Xn or Yn.

Theorem 1. The general solution to problem (1) subject to (3) is given by

(15) θn = A+B + (PXnX∗
nP )+Xn(Y ∗

n − X∗
nA+B) + Pξ,

where ξ ∈ Cr is an arbitrary vector satisfying

(16) X∗
nPξ = 0.

The proofs of this theorem and all those that follow can be found in the Appendix.

In many applications of the LS method, such as LS estimation, a unique solution

to the LS problem is essential because for instance, there is no reason to believe

that estimation error associated with a nonunique LS solution is small. A corollary

regarding unique LS solutions to the LSE problem follows from Theorem 1.

Corollary 1. The LS problem (1) subject to (3) has a unique solution, given

by

(17) θn = A+B + (PXnX∗
nP )+Xn(Y ∗

n − X∗
nA+B),

if and only if
(

A
X∗

n

)
has full column rank r.

Note that if XnX∗
n is nonsingular then

(
A

X∗

n

)
has full rank r but the converse is

not true in general. In addition, if A = 0 and B = 0, then P = I, and (17) reduces

to the unconstrained solution (6). If
(

A
X∗

n

)
does not have full rank, then (17) is the

minimum-norm solution. This is clear from its equivalence to (11), shown below.

(PXnX∗
nP )+P = [(PXnX∗

nP )∗(PXnX∗
nP )]+(PXnX∗

nP )∗P = (PXnX∗
nP )+

(X∗
nP )+ = [(X∗

nP )∗(X∗
nP )]+(X∗

nP )∗ = (PXnX∗
nP )+Xn

Thus (17) and (11) are equivalent. However, it will become clear later that (17) is in

a form more suitable for deriving its equivalent recursive form.

More usefully, the following theorem states that the unique LSE solution can

always be written recursively in a form identical to the recursion (7)–(9) for the

unconstrained RLS solution.

Theorem 2. The unique solution θn in (17) can always be written recursively as

θn+1 = θn + Kn+1(yn+1 − θ∗nxn+1)
∗(18)

Kn+1 = Pnxn+1/(1 + x∗
n+1Pnxn+1),(19)

Pn+1
def
= (PXn+1X

∗
n+1P )+ = (I − Kn+1x

∗
n+1)Pn.(20)

The only difference between unconstrained and linear-equality constrained RLS solu-

tions lies in their initial values. If the initial values are θn0 = (Xn0X
∗
n0

)−1Xn0Y
∗
n0
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and Pn0 = (Xn0X
∗
n0

)−1, θn in (7)–(9) is an unconstrained LS solution. When

the initial values are θn0 = A+B + (PXn0X
∗
n0

P )+Xn0(Y
∗
n0

− X∗
n0

A+B) and Pn0 =

(PXn0X
∗
n0

P )+, it is a linear-equality constrained LS solution.

Theorem 2 is the most important result of this paper. Note that the two matrices

(Xn+1X
∗
n+1)

−1 and (PXn+1X
∗
n+1P )+ in the two recursions or their initial values can

never be equal provided A 6= 0 since P is not of full rank. As a result, the two RLS

solutions are in general different even if they start from the same initial θn0 .

It is well known that the unconstrained LS problem has a unique solution if and

only if XnX∗
n is nonsingular. Not surprisingly, the state x0 of the linear system

xk+1 = Fkxk + Gkuk

yk = Hkxk + Ikuk

can be uniquely determined from finitely many output yk’s and input uk’s (i.e., is

observable) if and only if XnX∗
n is nonsingular, where Xn = [(H0Φ0,0)

∗, (H1Φ1,0)
∗, . . . ,

(HnΦn,0)
∗] and Φk,0 = Fk−1Fk−2 · · ·F0 for k > 0 and Φk,0 = I for k ≤ 0. As such,

the nonsingularity of XnX∗
n is also the condition for the observability of the above

system. The above results imply that if it is known that the state x0 satisfies linear-

equality constraints Ax0 = B, then the observability of the system can be relaxed

to
(

A
X∗

n

)
having full rank. This concept has important applications in e.g., power

system state estimation (see e.g., [37]), where virtual measurements are introduced

when the system is unobservable without constraints. These virtual measurements are

obtained from various circuit laws and are actually equality constraints. The above

results explains why the introduction of virtual measurements may make the system

observable.

To use the recursion (18)–(20), we need to make sure
(

A
X∗

n

)
has full rank r. Note

that the sum of n dyads of (r × r)-dimension has a rank no greater than min(r, n)

and

[A∗ Xn]

[
A

X∗
n

]
= A∗A + XnX∗

n = A∗A +

n∑

i=1

xix
∗
i .

Let m be the rank of A. As such, n = r − m > 0 is the smallest n for which
(

A
X∗

n

)

may have full rank r. On the other hand, the columns of Xn are usually linearly

independent in practice. Consequently, the first time we need to check whether
(

A
X∗

n

)

has full rank or not is when r − m data points are collected, and the exact recursion

(18)–(20) can usually be started at this time.

5. Robust RLS Solution to LSE Problem. A recursive solution to the LSE

problem was presented in the previous section. It is well-known that recursive algo-

rithms are often vulnerable to numerical errors due to truncation and/or rounding off.
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For the LSE problem, it is important to guarantee that the recursive solution always

satisfies the linear constraints even in the presence of numerical errors. We derive

below a robust RLS solution for the LSE problem that provides such a guarantee.

If θn is in the equality-constraint set, given by (13), it can always be written as

θn = A+B + Pξn.

By (19), (20) and (A.11), we have PKn+1 = Kn+1. Hence, θn+1 of (18) can be

rewritten as

θn+1 = θn + PKn+1(yn+1 − θ∗nxn+1)
∗(21)

= A+B + P [ξn + Kn+1(yn+1 − θ∗nxn+1)
∗].

Note that numerical errors may render PKn+1 6= Kn+1 and thus there is no

guarantee for θn+1 of (18) to remain in the constraint set given by (13). However,

(22) indicates that if (18) of the recursion (18)–(20) is replaced by

(22) θn+1 = θn + P [Kn+1(yn+1 − θ∗nxn+1)
∗]

then θn+1 will always satisfy the linear constraints Aθn+1 = B no matter how large

the numerical errors are, provided A+B and P are calculated accurately, which is

done off-line without any recursion.

6. Linear-Inequality Constraints. In this section, we apply and extend the

results of Section 4 to give a recursive solution to the linear LS problem (1) subject

to linear-inequality constraints (4) (i.e., the LSI problem).

Throughout this section we assume that all of the complex vector and matrix

spaces in Section 4 are replaced by the corresponding real spaces, and the superscript

“*” denotes transpose only. Furthermore, without loss of generality, by the definition

of “≥” we assume xi ∈ Rr×1, yi ∈ R, θ ∈ Rr×1, A ∈ Rd×r, B ∈ Rd×1.

Applying quadratic programming theory to the LSI problem (see, e.g., ch. 10 of

[35]), we have the following two propositions.

Proposition 1. If XnX∗
n is nonsingular, the LSI problem possesses a unique

solution.

Proposition 2. If XnX∗
n is nonsingular, the solution to the LSI problem is either

the unconstrained LS solution or the solution to some linear-equality constrained LS

problem related to (4) (for details, see ch. 10 (p. 245) of [35] and (23), (24) below).

Note that under the nonsingularity assumption for XnX∗
n, (a) both the uncon-

strained LS and LSE problems always have unique recursive solutions; (b) these re-

cursive solutions possess the same form, given by (7)–(9) or (18)–(20); (c) the only

difference between the solutions of the two LS problems lies in their initial values. In

view of these, we describe below a recursive algorithm for solving the LSI problem,

which was inspired by the active set method for constrained optimization.
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A Recursive Solution to LSI Problem. Let Aj and Bj denote the jth row

vectors of A and B, respectively, j = 1, ..., d. Rewrite constraint (4) as

(23) Ajθ ≥ Bj , j = 1, ..., d.

The corresponding equality constraints are

(24) Ajθ = Bj , j = 1, ..., d.

From the above d equalities we have 2d distinct combinations, including the case where

no equality is selected, which correspond to all the combinations of the possible equal-

ity constraints selected from the d equality constraints plus the unconstrained case.

Suppose that XnX∗
n, n ≥ n0, is nonsingular. Then, the linear-inequality constrained

RLS solution can be described as follows.

Step I (Initialization): Using all given data through time n0, (6) and (9), (17)

and (20), calculate all of the above 2d different constrained and unconstrained LS

solutions θi
n0

, P i
n0

, i = 1, ..., 2d, by (17) and (6), respectively, as a group of initial

values. Note that many of the 2d − 1 distinct equality-constraint sets may be empty,

have a single element or be totally outside the original inequality-constraint set (23),

which can be determined prior to receiving data. There is no need to calculate the

associated LS solutions for the empty sets and for sets not satisfying (23). Assume

there are s single-element sets, e empty sets, and l sets not satisfying (23).

Step II (Recursive Computation): Calculate θi
n+1, K

i
n+1, P

i
n+1, i = 1, ..., 2d − e−

l − s, simultaneously by recursion (7)–(9) or (18)–(20) for each n > n0.

Step III (Output): Select a unique θm that satisfies (23) and yields the smallest

Sm(θm) in (1) of all θi
m, i ∈ {1, ..., 2d − e − l}, as the LS solution of (1) subject to

(23). Here m denotes the time instants at which an (optimal) solution is needed for

the LSI problem in practice.

Obviously, when the number of inequality constraints d is small, the above RLS

solution to (1) subject to (23) offers significant advantages. In addition, it is particu-

larly suitable for parallel processing.

7. Initialization of Constrained RLS Algorithms. In the above, we have

derived the exact recursive solutions to the linear LS problem subject to (3) and

(4), respectively. Only at time n0 when
(

A
X∗

n

)
has become of full rank, can they be

initialized by the initial value Pn0 = (PXn0X
∗
n0

P )+ and θn0 of (17). In practice this

is undesirable or even unacceptable.

Instead, we propose below a simple and easily implementable initialization sche-

me. Toward this end, let

X̃n
def
= [X0, Xn], Ỹn

def
= [Y0, Yn]
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and consider the following modified LS problem

min
θ̃

S̃n = (Ỹn − θ̃∗X̃n)(Ỹn − θ̃∗X̃n)∗(25)

= (Y0 − θ̃∗X0)(Y0 − θ̃∗X0)
∗ + (Yn − θ̃∗Xn)(Yn − θ̃∗Xn)∗,

subject to the linear constraints (3), where X0 and Y0 are to be determined. Denote

by θ̃n the solution to this modified problem using data through time n. Clearly,

θ̃n is in general not the exact recursive solution θn to the original LS problem (1).

Nevertheless, it can be shown that under some mild conditions on Xn, S̃n converges

to Sn and θ̃n converges to θn as n increases. This is understandable because the first

term in (26) is fixed while the second term is actually a sum of n dyads.

The trick with the initialization to be proposed is the following. Note that X0

and Y0 are up for us to choose. We could choose X0 such that X0X
∗
0 is nonsingular

and thus the recursion (20) can be correctly initialized by P0 = (PX0X
∗
0P )+. We

could also choose Y0 such that the initial θ̃0 is in the form of (17), given by

(26) θ̃0 = A+B + (PX0X
∗
0P )+X0(Y

∗
0 − X∗

0A+B) = A+B + P ξ̃,

where use has been made of (A.11) and ξ̃ depends on Y0. As such, θ̃n can be obtained

by the recursion (18)–(20) from the first time on. Specifically, inspired by the following

commonly used simple initialization for the unconstrained RLS algorithms (see, e.g.,

[23])

θ0 = 0, P0 = α−1I, α > 0

we propose the following simple initialization of the RLS algorithms for the LSE

problems

P0 = (PX0X
∗
0P )+ = (PRP )+, for any Hermitian positive definite matrix R,(27)

θ̃0 = A+B + P ξ̃, for any vector ξ̃ of suitable dimension,(28)

For simplicity, we may choose e.g.,

(29) X0X
∗
0 = R = αI, α > 0,

Clearly, X0X
∗
0 is nonsingular. By (27), (29) and P 2 = P (since P is a projector), we

have P+
0 = αP, P0 = α−1P+.

For the LSI problem, we choose at most 2d initial values of the above forms (as

mentioned in Sec. 6, Step I), where A(i) and B(i) (i = 1, ..., 2d) consist of one of the 2d

different combinations selected from the d equalities in (24). We calculate P i
n and θ̃i

n,

i = 1, ..., 2d, by (18)–(20) using the above 2d initial values for the equality constraints

(24). Then at each time n (or only at some required time m), the solution to the LSI
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problem is obtained by the one of θ̃i
n that satisfies (23) and yields the smallest S̃n(θ̃i

n)

in (26) of all θ̃i
n. To do so recursively, a recursion for S̃n(θ̃i

n) is required. This can be

derived as follows. Let

(30) Rn = X̃nX̃∗
n ∈ Rr×r, ln = X̃nỸ ∗

n ∈ Rr×1.

Obviously,

(31) Rn = Rn−1 + xnx∗
n, ln = ln−1 + ynxn.

Thus, using (1) and (30), we have

S̃n(θ̃i
n) = (Ỹn − θ̃i∗

n X̃n)(Ỹ ∗
n − X̃∗

nθ̃i
n) = ỸnỸ ∗

n − 2θ̃i∗
n X̃nỸ ∗

n + θ̃i∗
n X̃nX̃∗

nθ̃i
n

= ỸnỸ ∗
n − 2θ̃i∗

n (ln−1 + ynxn) + θ̃i∗
n (Rn−1 + xnx∗

n)θ̃i
n.(32)

In fact, since ỸnỸ ∗
n does not depend on θ̃i

n, to yield a smallest S̃n(θ̃i
n) at each recursive

step, only the follow needs to be evaluated

θ̃i∗
n (Rn−1 + xnx∗

n)θ̃i
n − 2θ̃i∗

n (ln−1 + ynxn).

The nice thing about this initialization for the linear-constrained problems is that

it is simple for implementation, it starts from the first time, and it converges to the

exact solution and the true parameter, as shown below.

In the sequel, θ̃n will be referred to as either the inexact RLS solution or simply

the RLS algorithm and θn as the (exact) RLS solution.

8. Convergence of Constrained RLS Algorithms. As the data size n in-

creases, there are three types of convergence for the LSE problem: (a) the inexact LS

solution θ̃n converges to the exact solution θn; (b) θn converges to the true parame-

ter; (c) θ̃n converges to the true parameter. Likewise for the LSI problem. We show

below, for both the LSE and LSI problems, the convergence of θ̃n to θn without any

assumption on the relation between Yn and Xn, and the convergence of θ̃n and θn to

the true parameter for an extremely popular linear model for Yn and Xn.

Consider the convergence of θ̃n to θn first. Note that X̃nX̃∗
n = X0X

∗
0 + XnX∗

n.

By Theorem 2, the solution θ̃n to (26) with the initialization (26) and (29) is given

by

(33)

θ̃n = A+B + [PX̃nX̃∗
nP ]+[X̃n(Ỹ ∗

n − X̃∗
nA+B)]

= A+B + [PX0X
∗
0P + PXnX∗

nP ]+[X0(Y
∗
0 − X∗

0A+B) + Xn(Y ∗
n − X∗

nA+B)]

= A+B + [P+
0 + PXnX∗

nP ]+[PX0(Y
∗
0 − X∗

0A+B) + Xn(Y ∗
n − X∗

nA+B)].

By (14), (A.1) and (A.11), we have PA+B = 0, (PX0X
∗
0P )(PX0X

∗
0P )+X0 = PX0.

This and (27) lead to P+
0 θ̃0 = PRP θ̃0 = PX0(Y

∗
0 − X∗

0A+B). Thus, (33) can be
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written as

(34) θ̃n = A+B +

[
1

n
P+

0 +
1

n
PXnX∗

nP

]+[
1

n
P+

0 θ0 +
1

n
Xn(Y ∗

n − X∗
nA+B)

]
.

Note the following

(35)

( 1
n
P+

0 + 1
n
PXnX∗

nP )+( 1
n
P0θ0 + 1

n
Xn(Y ∗

n − X∗
nA+B))

− ( 1
n
PXnX∗

nP )+( 1
n
Xn(Y ∗

n − X∗
nA+B))

= ( 1
n
P+

0 + 1
n
PXnX∗

nP )+( 1
n
P0θ0 + 1

n
Xn(Y ∗

n − X∗
nA+B))

− ( 1
n
P+

0 + 1
n
PXnX∗

nP )+( 1
n
Xn(Y ∗

n − X∗
nA+B))

+( 1
n
P+

0 + 1
n
PXnX∗

nP )+( 1
n
Xn(Y ∗

n − X∗
nA+B)

− ( 1
n
PXnX∗

nP )+( 1
n
Xn(Y ∗

n − X∗
nA+B)),

The first difference on the right hand side of (35) converges to zero as n → ∞ while the

first inequality in Assumption A.1 of Theorem 4 below holds. From the first identity

after (17) or (A.11) in the appendix it follows that P+
0 = (PRP )+ = P (PRP )+P .

By (A.17), we have W ∗P+
0 W = (W ∗RW )−1. These two identities lead to

(36)

( 1
n
P+

0 + 1
n
PXnX∗

nP )+ = (P 1
n
P+

0 P + 1
n
PXnX∗

nP )+

= [P (P+
0 + 1

n
XnX∗

n)P ]+ = W [W ∗( 1
n
P+

0 + 1
n
XnX∗

n)W ]−1W ∗

= W [ 1
n
(W ∗RW )−1 + 1

n
W ∗XnX∗

nW ]−1W ∗.

It follows from noting the second inequality in Assumption A.1 of Theorem 4 below

and using matrix identity (10) to expand the inverse of the above square brackets

that the second difference on the right hand side of (35) also tends to zero as n → ∞.

Hence, the difference between (17) and (33) is insignificant if n is large or P+
0 is small

(e.g., α in (29) is small). A by-product of the above analysis is that we should choose

a small α value for the initialization.

Since the above RLS algorithm for the LSI problem is based on the RLS algorithm

for the LSE problem, the difference between the above algorithm and the exact LS

solution to the LSI problem should also tend to zero as n goes to infinity.

Note that the above convergence analysis is valid for all Y0 (or ξ̃). However, the

difference θn − θ̃n for finite n would usually not be the same if different Y0’s are used.

It is better to choose some average value of Yn as Y0 if a priori information is available.

To show the convergence of the RLS algorithms when true parameter θ satisfies

the linear constraints, we have the following two theorems.

Theorem 3. Suppose xn and yn are related by the following linear system

(37) yn = θ∗xn + en, n = 1, 2, . . . ,

where θ satisfies the linear constraints (3) and e is some sequence. For the LSE

problem, the unique exact RLS solution θn converges to the true parameter θ in (37)
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satisfying the equality constraints (3) as n goes to infinity if and only if

(38) (
1

n
PXnX∗

nP )+
1

n
XnE∗

n

n→∞
−→ 0,

where En = (e1 e2 . . . en).

Clearly, the inexact solution θ̃n (i.e., the RLS recursion (18)–(20) with the simple

initialization) also converges to the true parameter θ in (37) satisfying the equality

constraints (3) as n increases under the same condition for θ̃n to converge to θn.

It is easy to see that the above condition for convergence is an extension of that

for the unconstrained RLS algorithm (see, e.g., p. 177 of [27]).

Theorem 4. Suppose the following assumptions hold.

A1. There exists two constants c, M > 0 such that 1
n
XnX∗

n ≥ cI, ∀n ≥ k0 for some k0

and 1
n
Xn(Y ∗

n − X∗
nA+B) ≤ MI∀n.

A2. 1
n
XnE∗

n

n→∞
−→ 0, where En was defined in Theorem 3.

A3. The set of (or bounded by) the equality constraints is compact.

Then for the LSI problem, both the inexact solution θ̃n and the unique exact RLS so-

lution θn converge to the true parameter θ in (37) satisfying the inequality constraints

(4) as n goes to infinity.

In other words, both θ̃n and θn as estimators of the true parameter θ are consistent

for the linearly-constrained problem under the stated assumptions.

9. Numerical Examples. Before presenting examples, we emphasize first that

the convergence we obtained in Section 8 is valid for every point under the stated

assumptions. In the case of random data, this can be translated into the almost

everywhere convergence if the convergence in the assumptions is also changed to

almost everywhere convergence. As such, results of convergence in some average

sense based on Monte Carlo simulations are not quite appropriate here since they are

too weak. Instead, we should have the convergence for (almost) every run.

Example 1: Constrained Minimum Variance Response Filter Consider

first an example of a constrained minimum variance response filter (see e.g., [23]).

The input xk and output zk of this filter are related by zk = θ∗xk, where θ is chosen

to minimize the average output power (variance):

min
θ

Pz =

n∑

k=r

|zk|
2 = θ∗XnX∗

nθ s.t. Aθ = B

where

Xn = [xr, xr+1, . . . , xn], xi = [xi−r+1, xi−r+2, . . . , xi]
∗

A = [s1, . . . , sm, 0, . . . , 0]∗, 0 ≤ m ≤ r

B = [b1, . . . , bm, 0, . . . , 0]∗, 0 ≤ m ≤ r

si = [1, ejω′

i , . . . , ejω′

i
(r−1)]∗
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This filter has a gain of bi for component with frequency ω′
i of the input xk if bi 6= 0

while suppressing the other frequency components, in particular, frequencies ω′
j with

bj = 0.

Clearly, this problem corresponds to the LSE problem of (1) subject to (3) with

Yn = 0.

In the simulation, the input xk’s were generated by

xk =

8∑

i=1

cie
jωik + ek

where e is a standard Gaussian white sequence, ω1,2 = ±π/2, ω3,4 = ±11π/12,

ω5,6 = ±π/4, and ω7,8 = ±π/3, c1,2 = 0.5, c3,4 = 1, c5,6 = 0.75, and c7,8 = 0.9. The

filter has order 12 and m = 6. It provides a (theoretically) distortionless response to

ω′
1,2 = ±π/2 and ω′

5,6 = ±π/4 frequency components (i.e., b1 = b2 = b5 = b6 = 1)

while suppressing the other components, especially ω′
3,4 = ±11π/12, and ω′

7,8 = ±π/3

(i.e., b3 = b4 = b7 = b8 = 0).

The results presented are based on 10 arbitrarily chosen Monte Carlo runs for the

following three filters:

• The unique batch LS (BLS) solution of (17), denoted by θ̄n, where the unique

minimum-norm solution of (15) was chosen before
(

A
X∗

n

)
becomes full rank.

• The exact RLS solution θn of (18)–(20), which was initialized by the batch solu-

tion θ̄m at exactly the first time when
(

A
X∗

m

)
becomes full rank.

• The RLS (IRLS) algorithm θ̃n of (18)–(20), initialized at n = 0 by, according to

(27) and (26) with Y0 = 0,

θ̃0 = (I − α2P )A+B, P0 = (αP )+, α = 10−4

Note that time n = 1 is the first time we have x1, . . . , xr such that xr is available.

Fig. 1 shows the Euclidean distances ‖θn−θ̃n‖ and ‖θ̄n−θ̃n‖ as functions of time n.

The distances ‖θ̄n−θn‖ were also obtained (but not shown here). They are all smaller

than 10−9, which indicates that the RLS solution θn is quite robust numerically even

when the robust version (22) was not used. The power spectra of the output of

the three adaptive filters with time-varying tap weights θ̄n, θn and θ̃n, respectively,

are plotted in Fig. 2. The three curves overlap exactly, which indicates that the

RLS algorithm converges to the exact solution. Table 1 gives their computational

complexities. The following observations can be made. The recursive solution has a

much lower computational burden than the batch solution; the RLS algorithm with

the simple initialization converges to the exact solution quickly; and the constrained

minimum variance response filter worked well, as expected. Note that this example

was implemented in Matlab, which is particularly efficient for matrix computation
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(and thus for the batch solution) but not for recursive computation (i.e., the RLS

algorithm).
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Fig. 1. Distances among the LS solutions.
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Fig. 2. Output power spectra of the three adaptive filters (they overlap).

Table 1

Computational complexities of three LS algorithms for n = 64.

Batch LS θ̄n Exact RLS θn Inexact RLS θ̃n

FLOPs (in 106) 31.4 1.65 1.15

CPU Time (sec.) 0.64 0.12 0.038

Example 2: Convergence of Inequality-Constrained RLS Algorithm In

this example, we show the convergence of the RLS algorithm with linear-inequality

constraints no matter whether the true parameter θ satisfies Aθ ≥ B or not.The data

xn and yn are generated by the following linear system

yn = θ∗xn + en, n = 1, 2, . . . ,
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The following were used: r = 3, θ(1) = (1.5, −1, 0.1)′ for the first case such that

Aθ(1) = (6.6, 4.2)′ ≥ B and θ(2) = (−3, 2 2)′ for the second case such that Aθ(2) =

(−11, −4)′ < B, where A =
(

5
2

1
−1

1
2

)
, B = (5, 1)′. The sequences xn and en are still

i.i.d. zero-mean Gaussian processes as in the previous examples. Hence, assumptions

A1 and A2 of Theorem 4 hold, as explained before.

Figs. 3 and 4 show the results for the two cases of true parameters θ(1) and

θ(2), respectively. The three different lines in the left subplots represent the three

elements of the vector θ̃n, respectively, which can be seen to converge quickly to the

true parameters 1.5, −1, 0.1, respectively, for the first case θ = θ(1). In the right

subplots, the solid and dashed lines are the two elements of vector Aθ̃n, respectively.

They are always above the two elements of vector B (i.e., the dotted lines y = 1

and y = 5), respectively. This indicates that the inequality constraints Aθ̃n ≥ B are

always satisfied.
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Fig. 3. Convergence and robustness of inequality-constrained RLS algorithm with Aθ ≥ B.

In Fig. 4, although the true parameter θ(2) does not satisfy Aθ(2) ≥ B, the

algorithm θ̃n still converge to the LS solution θn subject to the constraints Aθ ≥ B,

which however, does not converge to the true parameter (−3, 2, 2) because the true

parameter does not satisfy the constraints imposed. Since the two elements of Aθ̃n in

Fig. 4 are never below the two elements (5 and 1) of B, respectively, the inequality

constraints are always satisfied. In fact, one of the dotted lines y = 5 and a dashed line

overlap completely (i.e., the solution reach the boundary — an equality constraint is

satisfied), which indicates for this example that the LS cost function would be reduced
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if this inequality constraint were relaxed.
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Fig. 4. Convergence of and robustness inequality-constrained RLS algorithm with Aθ 6≥ B.

Thus, it is demonstrated that the inequality constrained RLS algorithm developed

in this paper for different initial values is convergent and robust in the presence of

computational errors.

10. Extensions. All the results presented above would also be valid if yi is

vector-valued and/or B in the linear constraints is a matrix rather than a vector.

It is also clear that the RLS solution to the LSI problem also works for the LS

problems with both equality and inequality constraints.

Since the RLS solution to the LSE problem has the same recursion as that of the

unconstrained RLS solution and PXnX∗
nP has similar properties (e.g., near Toeplitz)

as those of XnX∗
n, it can be expected that at least some of the fast algorithms (com-

putationally efficient algorithms) developed for the unconstrained RLS solution are

also valid for the RLS solution to the LSE problem. As a result, numerically robust

fast algorithms (with O(r) computational complexity) for the linearly-constrained LS

problems may be readily available.

For the weighted LS (WLS) problems in which (1) is replaced by the following

min
θ

Sn(θ) = (Yn − θ∗Xn)W (Yn − θ∗Xn)∗ = (YnC − θ∗XnC)(YnC − θ∗XnC)∗,

where W = CC∗ is a positive definite weighting matrix, all the results of this paper

are valid with Yn and Xn replaced by YnC and XnC, respectively. In this case, the

mean-square error matrix of the WLS solution to the LSE problem is also minimized
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by the choice W = R−1 if the true parameter also satisfies the constraints and the

residual Yn − θ∗Xn have zero mean.

11. Conclusions. In this work, we have shown that the unique solution of the

LS problem with linear-equality constraints (i.e., the LSE problem) can always be cal-

culated by a recursion that is identical to the one for the unconstrained LS problem.

The set of all solutions to the LSE problem was derived first, from which the unique

solution was obtained, along with a necessary and sufficient condition for its existence.

Then a recursive algorithm for the solution to the LS problem with linear-equality

constraints (i.e., the LSI problem) was developed based on the recursive solutions to

the LSE and the unconstrained problems. The RLS algorithm can be made numer-

ically robust which guarantees that the recursively calculated solution satisfies the

linear constraints no matter how large the numerical errors are. Also presented are a

simple initialization of the RLS algorithm for the LSE and LSI problems, along with

the convergence of this RLS algorithm to the exact LS solution, and the convergence

of both the RLS algorithm and the exact RLS solution to the true parameter if it

satisfies the constraints. Some numerical examples were given. They all support the

above analytical results well.

Appendix. Moore-Penrose generalized inverse. At the repeated requests

of a reviewer, we provide the following statements about the MP inverse. There are

different generalizations of the inverse of matrix A for the case where A is singular or

rectangular. The Moore-Penrose generalized inverse, or MP inverse for short, is the

most popular one. For any m × n matrix A it always exists and is the unique n × m

matrix X satisfying all four Penrose conditions:

AXA = A

XAX = X

(AX)∗ = AX

(XA)∗ = XA

Compared with matrix inverse, the MP inverse of Am×n has properties that are (a)

identical, e.g., (A−1)−1 = A ↔ (A+)+ = A; (b) similar, e.g., AA−1 = A−1A =

I while AA+ = Pm, A+A = Pn, where P is an orthogonal projection matrix; (c)

restricted extensions, e.g., (AB)−1 = B−1A−1 when A and B are nonsingular, while

(AB)+ 6= B+A+ but (AB)+ = B+A+ if A is full column rank and B is full row rank;

or (d) different when zero matrix is involved, e.g., O+ = O′.
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MP inverse is related to the inverse:

A+ = A−1 if A−1 exists

A+ = A−1
L (left inverse) = (AHA)−1AH if (AHA)−1 exists

A+ = A−1
R (right inverse) = AH(AAH)−1 if (AAH)−1 exists

Proof of Theorem 1. By the basic properties of the M-P inverse (see, e.g., [3]),

we have

(A.1) X∗
nP (PXnX∗

nP )+PXnX∗
nP = X∗

nP (X∗
nP )+(PXn)+PXnX∗

nP = X∗
nP,

Substituting it and (13)–(14) into (1) yields

(A.2)

Sn = tr{[Yn − (B∗A+∗ + η∗P )Xn][Yn − (B∗A+∗ + η∗P )Xn]∗}

= tr{[η∗ − (Yn − B∗A+∗Xn)X∗
nP (PXnX∗

nP )+]PXnX∗
nP

[η∗ − (Yn − B∗A+∗Xn)X∗
nP (PXnX∗

nP )+]∗

+(Yn − B∗A+∗Xn)(Yn − B∗A+∗Xn)∗

−(Yn − B∗A+∗Xn)X∗
nP (PXnX∗

nP )+PXn(Yn − B∗A+∗Xn)∗}.

where the second equation can be checked by a straightforward calculation of each

term in view of (A.1). Clearly, Sn is minimized by the solution, if exists, of the

following equation

tr{[η∗ − (Yn − B∗A+∗Xn)X∗
nP (PXnX∗

nP )+]PXnX∗
nP

[η∗ − (Yn − B∗A+∗Xn)X∗
nP (PXnX∗

nP )+]∗} = 0.

It is well known that the general solution of the above equation is given by

(A.3) η = (PXnX∗
nP )+PXn(Y ∗

n − X∗
nA+B) + ξ, ∀ξ : X∗

nPξ = 0.

It follows from (13),(14) and (A.3) that

(A.4) θn = A+B + P (PXnX∗
nP )+PXn(Y ∗

n − X∗
nA+B) + Pξ, ∀ξ as in (A.3).

Without loss of generality we assume PXn 6= 0, otherwise, θn = A+B + Pξ

satisfying (15). Let L(D) be a vector subspace spanned by the column vectors of

matrix D, the column vectors of matrix V1 be an orthonormal basis of L(A+), and

the column vectors of matrix V2 be an orthonormal basis of L(PXn).

Since A+∗P = A+∗ − A+∗A+A = 0, we have

(A.5) V ∗
1 V2 = 0.
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Therefore, when [V1 V2] is not a unitary matrix, there must exist a matrix V3 such

that [V1V2V3] is a unitary matrix. By the definition of V2, there exists the following

full-rank decomposition of PXn

(A.6) PXn = V2K, KK∗ is nonsingular.

Hence,

(A.7) PXnX∗
nP = V2KK∗V ∗

2 , (PXnX∗
nP )+ = V2(KK∗)−1V ∗

2 .

Similarly,

(A.8) A+ = V1H, HH∗ is nonsingular,

and

(A.9) A = H∗(HH∗)−1V ∗
1 , A+A = V1V

∗
1 .

Using (14), (A.9) and the definition of [V1V2V3], we have

P = [V1V2V3][V1V2V3]
∗ − V1V

∗
1 = V2V

∗
2 + V3V

∗
3(A.10)

It follows from the definition of V3, (A.7) and (A.10) that, since P is a projection

(P 2 = P ),

(A.11) (PXnX∗
nP )+P = P (PXnX∗

nP )+ = (PXnX∗
nP )+.

Obviously, when [V1V2] is unitary, (A.11) still holds. Substituting (A.11) into (A.4)

yields (15).

Proof of Corollary 1. Note first that only θn of (15) with Pξ = 0 can be a

unique solution, otherwise θn of (15) with αPξ for any real number α 6= 0 would be

a distinct solution since αX∗
nPξ = 0. When Pξ = 0, (15) gives a unique solution due

to the uniqueness of the M-P inverse. Thus the LSE problem has a unique solution

iff Pξ = 0. A necessary and sufficient condition for Pξ = 0 such that X∗
nPξ = 0 is

that the vector Pξ is in the row space of X∗
n. Since P = I −A+A is a projector onto

the orthogonal complement of the row space of A, the above necessary and sufficient

condition holds iff the row space of X∗
n is the orthogonal complement of the row space

(i.e., subspace spanned by the row vectors) of A, which is equivalent to
(

A
X∗

n

)
having

full rank r.

Proof of Theorem 2. Denote

(A.12) θn = θn − A+B, Y n = Yn − B∗A+∗Xn, yn = yn − B∗A+∗xn.

From (17) and (A.12) , we have

(A.13) θn = (PXnX∗
nP )+XnY

∗

n.
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Therefore, similar to the unconstrained LS problem, if we can prove that the second

equality of (20) holds, it is easy to prove that

(A.14) θn+1 = θn + Kn+1(yn+1 − θ
∗

nxn+1)
∗

and (19) are true, then using (A.12) and (A.14) we have (18), in other words, it is

sufficient to prove the second equality in (20).

Let [V1 W ] be a unitary matrix. By (A.9) we have

(A.15) P = I − A+A = [V1 W ][V1 W ]∗ − V1V
∗
1 = WW ∗,

and

(A.16) PXnX∗
nP = WW ∗XnX∗

nWW ∗.

Note that AW = 0, which follows from (A.9) and the orthogonality of V1 and W .

Hence

W ∗[A∗ Xn]

[
A

X∗
n

]
W = [0 W ∗Xn]

[
0

X∗
nW

]
= W ∗XnX∗

nW

From the assumption that
(

A
X∗

n

)
has full column rank, it is thus clear that W ∗XnX∗

nW

is nonsingular since W has full rank and thus

(A.17) (PXnX∗
nP )+ = W (W ∗XnX∗

nW )−1W ∗.

Using the first equality of (20), (A.17) and (9), we have

Pn+1= W (W ∗Xn+1X
∗
n+1W )−1W ∗

= W (I − (W ∗XnX∗
nW )−1W ∗ xn+1x

∗
n+1W

1 + x∗
n+1W (W ∗XnX∗

nW )−1W ∗xn+1
)

× (W ∗XnX∗
nW )−1W ∗

= (I − Pnxn+1x
∗
n+1/(1 + x∗

n+1Pnxn+1))Pn,

which is the second equality of (20).

Proof of Theorem 3. Substituting (37) into (17) and using (13), (A.15), (A.17)

and (38) give

θn = A+B + (PXnX∗
nP )+

[
XnX∗

n(θ − A+B) +

n∑

i=1

xie
∗
i

]

= A+B + W (W ∗XnX∗
nW )−1W ∗

(
XnX∗

nWW ∗ξ +

n∑

i=1

xie
∗
i

)

= θ + (
1

n
PXnX∗

nP )+
1

n

n∑

i=1

xie
∗
i .
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Proof of Theorem 4. According to the analysis in Sec. 7, the difference between

θ̃n and θn converges to zero, under Assumption A1, as n increases. It thus suffices to

show the convergence of θn.

Note first that the true parameter θ satisfying the inequality constraints means

that either it is in the region bounded by the constraints or it satisfies some equality

constraints. Under assumptions A1 and A2, it is clear from Theorem 3 that for the

recursive algorithm θi
n of Section 6, the unconstrained solution will converge to θ if θ is

in the region bounded by the constraints, or in the case when θ satisfies some equality

constraints in (24) the solution subject to the corresponding equality constraints will

converge. It is thus clear that the possible cause for the algorithm not to converge to

θ may only come from those solutions for which θ does not satisfies the corresponding

equality constraints (or not in the region bounded by them) assumed.

Suppose that the algorithm does not converge to θ. There must be an equality

constraint set (or the region bounded by the constraints) Sj for which θ /∈ Sj but

the corresponding θj
n is chosen as the RLS solution by the algorithm infinitely many

times. By A3, there must exist a subsequence {θj
nk
} of {θj

n} such that it converges

to θ̄ 6= θ and its elements are all chosen as the solutions (at different times) by the

algorithm. Furthermore, assume θ ∈ Si and denote by θi
n the corresponding solution

that converges to θ. For the difference between the corresponding two sequences {θi
n}

and {θj
n} we have under A1 and A2,

1

nk

[Snk
(θi

nk
) − Snk

(θj
nk

)](A.18)

=
1

nk

[(θi
nk

− θj
nk

)∗Xnk
X∗

nk
θi

nk
+ θj∗

nk
Xnk

X∗
nk

(θi
nk

− θj
nk

)

− 2(θi
nk

− θj
nk

)∗Xnk
(X∗

nk
θ + E∗

nk
)]

=
1

nk

[(θi
nk

− θj
nk

)∗Xnk
X∗

nk
(θi

nk
− θ) + (θi

nk
− θj

nk
)∗Xnk

X∗
nk

(θj
nk

− θ)]

−
2

nk

(θi
nk

− θj
nK

)∗Xnk
E∗

nk

≥
c

2
‖θ − θ̄‖2, ∀nk > k0 for some k0.

On the other hand, we know that (a) the cost function of the exact unconstrained LS

solution θnk
is never smaller than that of any constrained LS solution and (b) θj

nk
has

a cost function not greater than that of θi
nk

since θj
nk

is chosen as the solution by the

algorithm for time nk. In other words, we have

(A.19)
1

nk

Snk
(θnk

) ≤
1

nk

Snk
(θj

nk
) ≤

1

nk

Snk
(θi

nk
),

Since θnk
and θi

nk
both converge to the true parameter θ ∈ Si, the difference between

the third term and the first in (A.19) converges to zero. As a result, the difference
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between the second and third terms in (A.19) must converge to zero as well. But this

contradicts (A.19). It thus follows that the theorem holds.
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