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FUNDAMENTAL GROUPS OF MANIFOLDS
OF NONPOSITIVE CURVATURE

WERNER BALLMANN & PATRICK EBERLEIN

Introduction

The universal covering space H of a complete Riemannian manifold M of
nonpositive sectional curvature is diffeomorphic to Rn, n — dim(Λf). Hence
the homotopy type of M is completely determined by the isomorphism class of
the fundamental group Γ of M. It is, therefore, only natural to expect strong
relations between the geometric structure of M and the algebraic structure of
Γ. In this paper we obtain several such relations:

A general assumption in the results we state below is that
(1) the sectional curvature is nonpositive and bounded from below by some

constant -a2 and
(2) the volume of M is finite.
We define the rank of a unit tangent vector υ of M, rank(u), to be the

dimension of the space of all parallel Jacobi fields along the geodesic yv which
has initial velocity v. The minimum of rank(ί ) over all v e SM is called the
rank of M. This agrees with the usual rank if M is a locally symmetric space.
Manifolds of rank one resemble manifolds of strictly negative curvature (see [2]
[3], and §2 below). Manifolds of higher rank are studied in [5], [6], [7], and [3],
and the conclusive result is that H is a space of rank one, or a symmetric
space, or a Riemannian product of such spaces. This is the basic ingredient in
the proofs of our results; it allows us, more or less, to consider only the cases
that H is of rank one or a symmetric space.

As a first example of this principle we indicate in our preliminary section the
proof of the following theorem.

Theorem A. Either M is flat or Γ contains a nonabelian free subgroup.

This is an improvement of the result of Avez [1] that Γ has exponential
growth if M is compact and not flat.
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Following Prasad and Raghunathan [27] we define the subset At of Γ to

consist of those elements whose centralizer contains a free abelian group of

rank at most i as a subgroup of finite index. Note that

Ao c Ax a A2 c

We define r(Γ) to be the minimal integer / such that Γ can be written as a

finite union

T = yιAiUy2AiU ••• U γ ^

of left translates of Ai9 γ1? , ym e Γ arbitrary.

A result of Prasad and Raghunathan in [27] states that r(T) is equal to the

rank of the symmetric space G/K of noncompact type if Γ belongs to the

identity component of G. (This does not imply that r(Γ) = rank(M) if M is a

locally symmetric space, cf. §4.) We set

rank(Γ) = max{ r ( Γ * ) | Γ * a finite index subgroup of Γ }.

Theorem B. rank(M) = rank(Γ).

Since the homotopy type of M is determined by the fundamental group Γ

we obtain the following immediate consequences of Theorem B.

Corollary 1. The rank of M is a homotopy invariant of M.

Corollary 2. // M is compact, then the ergodicity or nonergodicity of the

geodesic flow in the unit tangent bundle SM is a homotopy invariant of M.

In the special case that M is compact and of rank one the first corollary was

obtained in [10]. With regard to the second corollary it was shown in [4] that

the geodesic flow is ergodic if M is compact and of rank one, and the converse

assertion was proved in Theorem 4.5 of [6].

As a further application of Theorem B we obtain a characterization of

irreducible locally symmetric spaces of noncompact type and rank at least two

in terms of algebraic data in the fundamental group. Here a Riemannian

manifold is called irreducible if none of its finite coverings is a Riemannian

product.

Theorem C. M is an irreducible locally symmetric space of noncompact type

of rank k ^ 2 if and only if Γ satisfies the following three conditions:

(1) Γ is finitely generated.

(2) No finite index subgroup of Γ is a direct product.

(3) rank(Γ) = k > 2.

Remark. Clearly condition (1) can be deleted if M is assumed to be

compact. In combination with (2) it implies that the universal cover H does not

contain a Euclidean factor (see (1.9) below). One may replace (1) by the

assumption that Γ does not contain a proper normal abelian subgroup; this

also excludes Euclidean factors in H by the main theorem of [13].
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Applying the celebrated rigidity results of Mostow [26] and Margulis [24],

[25] Theorem C has the following consequence.

Theorem D. Suppose Γ is isomorphic to the fundamental group Γ* of an

irreducible locally symmetric space M* of noncompact type and rank at least two.

Then M and M* are isometric up to rescalings of the metric of M*.

Under the assumption that M is compact this was proved by Gromov [18],

[19], and, in a special case, by Eberlein [14].

The paper is organized as follows. §1 introduces notation and relevant

results, and we use these results to prove Theorem A. In §2 we define and

discuss the rank of an abstract group. Our main result here is that the rank of a

direct product is the sum of the ranks of the factors, and that the rank is

unchanged under passage to a finite index subgroup. Combined with (1.7) and

(1.8) below this reduces Theorem B to the two cases that M has rank one or is

locally symmetric, the second of which is Theorem 3.9 of [27]. In §3 we prove

Theorems B and C. §4 contains examples. The first two examples illustrate the

fact that Theorem B is false if rank(Γ) is replaced by r(Γ), even if M = H/T

is locally symmetric. The third example shows the necessity of. the first

hypothesis of Theorem C.

We are grateful to R. Spatzier for bringing the results of Prasad and

Raghunathan to our attention.

1. Preliminaries

(1.1) Notation. In general we shall use the notation and basic results of

[15]. See also §1 of [5]. In this paper all manifolds considered are complete,

connected Riemannian manifolds of nonpositive sectional curvature. M will

always denote a manifold with finite volume and H will always denote a

simply connected manifold. The unit tangent bundles are denoted by SM, SH,

and 7r: SM -> M, SH -> H denotes the projection map. All geodesies of M or

H are assumed to have unit speed. If υ is a unit vector in SM or SH, then yv

denotes the geodesic with initial velocity υ. The Riemannian metric on M, H

induces a natural Riemannian metric on SM, SH, and the corresponding

distance functions are denoted by d on M, H and by d * on SM, SH. The

isometry group of H is denoted by I(H), and the connected component of

I(H) that contains the identity is denoted by I0(H).

(1.2) Asymptotes and points at infinity. Two unit speed geodesies γ, σ of H

are said to be asymptotes if d(yt, ot) < c for some positive constant c and for

all t > 0. An equivalence class of asymptotes is a point at infinity for H, and

H(oo) denotes the set of all points at infinity for H. We let γ(oo) and γ(-oo)

denote the points at infinity determined by γ and γ " 1 : t -> γ(-ί) Given points
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p G H and JC G H(OO) there is a unique unit speed geodesic ypx such that

Vpjc(O) = P a n c ^ ϊpx belongs to JC. The space H = H U //(oo) with a natural

topology is homeomorphic to the closed unit «-ball, and for each point p in H

the map JC -> ypx(0) is a homeomorphism of H(vo) onto the unit (n — l)-sphere

in TpH. Isometries of H extend in an obvious way to homeomorphisms of

H(oo).

Given p e H and JC e H(oo) the restriction to [0, oo] of ypx is said to join p

and x or to have endpoints p and JC. Similarly, if x, y are distinct points in

7/(oo), then a maximal geodesic γ is said to join JC and y or to have endpoints

x and y if γ(oo) = JC and γ(-oo) = y (or γ(oo) = y and γ(-oo) = x). The

geodesic (when this is unique) joining distinct points x, y in H will be denoted

by γ ^ . Our convention is that 7^(0) = JC if JC is a point of H.

(1.3) Rank of a manifold [5]. For each unit vector v in SH or SM we define

r(υ) to be the dimension of the space of parallel Jacobi vector fields defined on

the maximal geodesic yυ: R -> H or R -> Af. We define rank(//) (or rank(Af))

to be the minimum of the integers r(υ) over all vectors υ in SH (or SM).

Clearly rank(i/) = rank(M) if H covers M, and the rank of a product

manifold is the sum of the ranks of the factors. A vector v in SH or SM is

called regular if r(υ) = rank(i/) or rank(M). If // admits a smooth quotient

manifold M of finite volume, then the regular vectors of SH (SM) form a

dense open subset of SH (SM) by Theorem 2.6 of [5].

(1.4) The De Rham decomposition [22]. A complete, simply connected

Riemannian manifold X is irreducible if it cannot be written as a Riemannian

product Xλ X X2 of two Riemannian manifolds of positive dimension. A

reducible space X has a Riemannian product decomposition

y V V V V V V
yv — ΛQ A Λ-^ χ\ * * * /\ Λ-k,

where Xo is a Euclidean space and each Xt is irreducible for 1 < / < fc. This

decomposition of de Rham is unique up to isometric equivalence and ordering

of the factors Xl9 - ,Xk.

If H = H! X X Hk is any Riemannian product decomposition of a

simply connected manifold H of nonpositive curvature, then a subgroup

Γ c /(//) is said to preserve the factors of the decomposition if the foliations

of H induced by the factors are left invariant by Γ. In this case every element

φ of Γ can be written φ = φ x X φ 2 X Xφ^, where φz e /(//,), and one

obtains projection homomorphisms pt•:. Γ -> /(//,-) given by /?,(φ) = φ7 for all

1 < / < k. If H has no Euclidean de Rham factor, then each factor Ht above is

a Riemannian product of some subset of the de Rham factors of H. Since

every subgroup Γ of I(H) has a finite index subgroup Γ* that preserves the

factors of the de Rham decomposition of H, it follows that Γ* preserves the
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factors of all product decompositions of H whenever H has no Euclidean de

Rham factor.

(1.5) Duality condition [8], [2], Two points x, y in //(oo) are said to be

dual relative to a group Γ c /(//) if there exists a sequence { φ J c Γ such

that ψn(p) -> x and φ~ι(p) -* y as n -> oo for any point /? in //. Given a

point x e //(oo) the set of points j ; in //(oo) that are dual to Λ: relative to Γ is

closed in //(oo) and invariant under Γ. A group Γ c /(//) is said to satisfy the

duality condition if for every geodesic γ of H the points γ(oo) and γ(-oo) are

dual relative to Γ.

The duality condition may be restated in the following useful form (cf. [2, p.

137]). For any group Γ c /(//) one defines a nonwandering set Ω(Γ) c SH as

follows: A vector v e SH lies in Ω(Γ) if and only if for every neighborhood

O c SH of υ and every positive number A there exists t > A and φ e Γ such

that [(dφ° g')(0)]Π 0 is nonempty, where {g'} denotes the geodesic flow.

The condition that Γ satisfy the duality condition is then precisely the

condition that Ω(Γ) = SH.

If Γ c /(//) is a discrete group such that the quotient space H/T has finite

volume, then Γ satisfies the duality condition. For any group Γ that satisfies

the duality condition one also has the following useful properties:

(1) If Γ* is a finite index subgroup of a group Γ that satisfies the duality

condition, then Γ* satisfies the duality condition.

(2) If H is a Riemannian product Hτ X H2 and if Γ c /(// χ x //2) is a

subgroup that satisfies the duality condition and preserve the factors of the

decomposition, then /?,(Γ) is a subgroup of /(//,) that satisfies the duality

condition for i = 1,2, where pt: Γ -> /(//z) is the projection homomorphism.

The projection pt(T) need not be discrete in /(//,) even if Γ is discrete in

/(//). The restriction in (2) that Γ preserve the factors of the decomposition is

usually not serious. One can usually reduce a given problem to the case that H

has no Euclidean factor (cf. the proof of Theorem B in §3). By (1.4) one may

then pass to a subgroup Γ* of finite index which preserves the factors of the

decomposition, and by (1) above Γ* still satisfies the duality condition.

Splitting theorems. If Γ c /(//) satisfies the duality condition, then an

algebraic splitting of Γ corresponds very closely to a geometric splitting of H.

(1.6) Theorem. Let H admit no Euclidean de Rham factor, and let Γ c /(//)

satisfy the duality condition. If Γ is a direct product I\ X Γ2, then H splits as a

Riemannian product Hλ X H2 such that Tλ c I(Hλ) X {1} and Γ2 c {1} X

/(// 2 ). In particular, if Γ is discrete and H/T is a smooth manifold of finite

volume, then H/T is isometric to {Hλ/T^) X (//2/Γ2).

(1.7) Theorem. Let H be a Riemannian product Hλ X H2 such that H has no

Euclidean de Rham factor and I(H2) is discrete. Let T c /(//) be a discrete
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group such that the quotient space H/T has finite volume. Then Γ has a finite

index subgroup Γ* that is a direct product I\* X Γ2*, where I\* c I(Hλ) X {1}

and Γ2* c {1} x I(H2). In particular if H/T is a smooth manifold, then H/T*

is a Riemannian product (Hλ/Tf) X (H2/T£) that finitely covers H/T.

The first of these results is a special case of the corollary to Theorem 1 of

[29]. The result in [29] itself generalizes results of [16] and [23], who proved the

result in the case that Γ is a discrete centerless group and H/T is a smooth

compact manifold. The second of the results stated above follows from

Theorem 4.1 and Proposition 2.2 of [9]. These two results of [9] are actually

stated for discrete groups Γ such that the quotient space H/T is a smooth

manifold of finite volume, but the proofs remain valid in this generality and

require at most trivial modifications.

(1.8) Theorem. Let H have sectional curvature satisfying -a1 < K < 0 for

some positive constant a, and let Γ c /(//) be a discrete group such that the

quotient space H/T has finite volume. Then H is a Riemannian product

H — HQ X Hς X Hγ X X H^,

where Ho is a Euclidean space with its canonical flat metric, Hs is a symmetric

space of noncompact type, and, for 1 < / < k, Ht is a rank one manifold such

that /(i/,) is discrete and satisfies the duality condition.

Of course, any of the factors in the decomposition above could be absent.

The result may be true without the bounded curvature restriction and with

only the single hypothesis that I(H) satisfy the duality condition. The result as

stated follows immediately from Proposition 4.1 of [12] and the discussion in

§1 of [3], especially Theorem 1.4 (see also [7]).

Spaces with Euclidean de Rham factors.

(1.9) Theorem. Let H be a Riemannian product Ek X Hλ, where Ek is aflat

Euclidean space of dimension k > 1 and Hλ has no Euclidean de Rham factor.

Let T c I(H) be a finitely generated discrete group such that M = H/T is a

smooth manifold of finite volume. Then M admits a finite Riemannian cover that

is diffeomorphic {but not necessarily isometric) to a Riemannian product Tk X

Mλ, where Tk denotes a flat k-torus and Mλ is a smooth Riemannian quotient of

Hv

The special case in which H/T is compact is Corollary 2 of [13]. The proof

of that result actually proves the result stated above. The hypothesis that Γ be

finitely generated cannot be deleted (see §4).

The results (1.6), (1.7), (1.8), and (1.9) will be needed later to prove

Theorems B and C of the Introduction. We now use the third of these results

to prove Theorem A. We assume that M = H/T is not flat.
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Proof of Theorem A. By Theorem 1.8 and the hypotheses of Theorem A we
may write H as a Riemannian product

11 = tl Q X M ς X 11 Y X * * * X H^

as described in Theorem 1.8, where either the symmetric space factor Hs exists
or the rank one factor Hλ exists. Let Γ* be a finite index subgroup of Γ that
preserves the factors of the decomposition, and let p0: Γ* -> /(//0), /?s: Γ* ->
I(HS), and /?f :Γ* -> /(//,-) for 1 < / < k be the corresponding projection
homomorphisms.

If H admits a rank one de Rham factor Hl9 then the group pλ(T*) satisfies
the duality condition in Hλ (see (1.5)), and hence pλ(T*) contains a non-
abelian free subgroup Fλ by Theorem 3.2 of [2]. It then follows that F = plι(Fλ)
contains a nonabelian free subgroup in Γ*.

If H admits a symmetric space factor Hs, then we consider the group
Γ** =/?51[/? s(Γ*)Π/0(fl5)]. Note that Γ** has finite index in Γ* since
IO(HS) has finite index in I(HS), and clearly ps(T**) c IO(HS). The group
IO(HS) is a semisimple Lie group with trivial center and no compact factors,
and hence it may be identified faithfully under the adjoint representation with
a subgroup of SL(«,R), n = dim/0(iί). By Theorem 1 of [30] (see also [20])
ps(T**) either contains a nonabelian free subgroup Fs or admits a solvable
subgroup of finite index. It suffices to prove that the second possibility cannot
occur, for then F = p$l(Fs) will contain a nonabelian free subgroup of Γ**.
The group ps(T**) satisfies the duality condition in Hs by earlier remarks in
(1.5) since Γ** has finite index in Γ. If ps(Γ**) did admit a solvable
subgroup of finite index, then Hs would be isometric to a Euclidean space by
Theorem 5.1 of [8], which is not the case.

2. The rank of a group

Let Γ be an abstract group. Given an element φ in Γ, let ZΓ(φ) denote the
centralizer of φ in Γ. As in the Introduction we denote by 4̂f (Γ) the subset of
Γ that consists of elements φ such that ZΓ(φ) contains a free abelian
subgroup of rank < / as a subgroup of finite index. We define

r( Γ) = min/ i: there exist finitely many

elements φy e Γ such that T = \<jφj- At(T)
j

and set

rank(Γ) = sup{r (Γ*) :Γ* c Γ i s a finite index subgroup}.
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We allow the possibility that r(Γ) = rank(Γ) = 0 (e.g. Γ is finite), and we

set r(T) = rank(Γ) = + oo if the sets A^T) are empty or if Γ is not covered

by finitely many translates of any of the sets A^T). We are primarily

interested in the case that Γ is a countably infinite group that arises as a

discrete group of isometries of some nonpositively curved space H. The

distinction between r(T) and rank(Γ) is a necessary technical complication

(see §4).

The main result of this section is the following:

(2.1) Proposition. Let Γ be an abstract group.

(1) // Γ* is a finite index subgroup of Γ, then rank(Γ*) = rank(Γ).

(2) // Γ = I\ X xΓ^fl direct product, then
k k

K O = Σ KΓf ) and rank(Γ) = £ rank^.).
ι = l / = 1

The proof of this result will be carried out in several steps.

(2.2) If Γ* c Γ is a finite index subgroup, then r(Γ) < r(Γ*) and rank(Γ)

= rank(Γ*).

Proof. The inequality follows since A^T*) Q A^T) for all /, and as a

consequence we get r(Γ) < r(Γ*). As for the second claim, clearly rank(Γ) >

rank(Γ*). If f is a finite index subgroup of Γ, then Γ* = Γ * Π Γ i s a finite

index subgroup of Γ* and of f. Hence rank(Γ*) > r(T*) > r(T) and there-

fore rank(Γ*) = rank(Γ).

(2.3) r ( I \ X Γ2) < r(I\) + r(Γ 2).

This follows from the fact that

(2.4) Let Γ = I\ X Γ2 and let φ = φ X φ 2 e ^l^Γ). Then there exist in-

tegers r and s such that r + s = /, φλ G ̂ 4r(Γ1), and φ 2 G ^ 4 J ( Γ 2 ) .

Proof. By hypothesis Z Γ ( φ ) = Z Γ ( φ x ) X Z Γ (φ 2 ) contains a free abelian

subgroup Δ of rank r* as a subgroup of finite index for some r* < /. For

y = l ,2 choose free abelian subgroups Δj Q Zτ(ψj) of rankry such that

Δx X Δ 2 has finite index in Δ and Δ has finite index in ZΓ.(φ, ). It follows

that rλ + r2 = r* since Δx X Δ 2 has finite index in Δ. Now choose integers

r > rx and s ^ r2 such that r + s = i.

As a consequence of (2.4) and the remark following (2.3) we obtain

A,(Γ1XT2)= U AATJXAATJ
(2.5) r + , - ,

Next we show that

(2.6) r ( I \ X Γ2) > r(Γ f c) forA: = l , 2 .
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To prove this merely note that if I\ X Γ2 = U/φ,- X ψj) Άi(Γ1 X Γ2) for

some finite collection {φy X ψ y) of elements of I\ X Γ2, then I\ = Όjψj

A^) and Γ2 = U, ψy ^/(Γj) by (2.5).

Proof. By (2.3) and (2.6) it suffices to consider the case that the integers

r(Tι X Γ2), r (I\) , and r(Γ 2) are all finite and positive. Let Γ = I\ X Γ2 and

suppose that

r(T) = i < r ( Γ 1 ) + r ( Γ 2 ) .

Let 7i = r ( r x ) - 1 ^ 0 and y2 = r(Γ 2) - 1 > 0. Then

(a) .

Choose elements φλ X ψ1? , φ ^ e ψ^ such that

(b) ( Φ l X ψ j ^ . ( Γ ) U . u ( φ , X ψ , ) ^ . ( Γ ) = Γ.

By definition of j \ and j 2 there are elements φ 0 G ΓX and ψ 0 e Γ2 such that

ψ o ^ ψ 1 ^.2(Γ2)u ... Uψ^ ^.2(Γ2).

Then

Φo X Ψo « (Φi X Ψi) - ( ^ Λ ( Γ I ) X Γ2) U U ( φ ^ X ψ^) - ( ^ ( Γ j X Γ2)

U ( Φ l X ψ j .(Γ x X Λ, 2 (Γ 2 )) U U ( φ ; v X ψ^) .(Γ x X ^ 2 ( Γ 2 ) ) .

This contradicts (a) and (b).

Proof of Proposition 2.1. Assertion (1) is contained in (2.2), and the first

part of assertion (2) is contained in (2.7). If Γ,* has finite index in Γ, for

1 < / < k, then Γ f x Γ 2 * X XΓ^* has finite index in Γ\ X Γ2 X xTk.

Hence

k

rankί^ X Γ2 X x Γ j > Σ KΓ/*)
ι = l

by (2.7), which proves that

k

rank^ xT2x •- xTk)> Σ rankίΓ,.).
i = l

Conversely, if Γ* has finite index in Γ, then Γ* contains a finite index

subgroup of the form Γf X ••• xΓf, where each Γ,* has finite index in Γz.

Hence r (Γ*) < Σf=1 rankίΓ,) by (2.2) and (2.7), which proves that
k

rank(Γ) = rank(rx X x Γ j < Σ rank(Γ, ).
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3. The main results

In the first part of this section we consider rank one manifolds. We say that

a geodesic γ in M or in H has rank one if y\t) has rank one for some t (and

hence for all t). For a subgroup Γ c I(H) define Bλ = ^ ( Γ ) by

Bλ = { φ G Γ : φ translates a rank one geodesic}.

If φ G ^ translates a rank one geodesic γ, then γ is the unique geodesic

translated by φ and hence is left invariant by Z Γ ( φ ) . In particular, if Γ is

discrete, then Z Γ ( φ ) contains an infinite cyclic subgroup of finite index, which

proves that ^ ( Γ ) c AX{T).

(3.1) Theorem. Let Γ c /(i f) be a discrete subgroup that satisfies the

duality condition. If the {geometric) rank of H is one, then r(T) = 1.

Remark. The proof actually shows that if Γ is any subgroup of I(H)

(possibly not discrete) that satisfies the duality condition, then there exist four

elements φ 1 ? φ 2 , ψx, and ψ2 in Γ such that

Γ = φ1Bι U ψ2Bλ U ψ1B1 U \p2Bx.

The proof of the theorem will require some preliminary results. The follow-

ing definition will be useful.

(3.2) Definition. A point x e H(oo) is called a hyperbolic point if for any

y Φ χ9 y G i/(oo), there is a rank one geodesic γ joining JC and y (that is,

γ(oo) = x and γ(-oo) = y or vice versa).

(3.3) Remark. If a rank one geodesic γ is translated by an isometry

φ G I(H), then γ(oo) and γ(-oo) are hyperbolic points. This follows from a

trivial modification of the proof of part (iii) of Theorem 2.2 in [2], where a

slightly different result is proved. If H has rank one and I(H) satisfies the

duality condition, then the hyperbolic points of i/(oo) that arise in this fashion

are dense in H(oo). To see this one can either apply Theorem 2.13 of [2] and

the fact that the rank one vectors are dense in SH or Theorem 2.13 of [2] and

Lemma 2.3b of [9].

(3.4) Lemma. Let γ be a rank one geodesic of H and choose ε0 > 0 so that if

d*(v,y'(0)) < ε0, then yv is of rank one. Then for each ε with 0 < ε < ε0 there

exist neighborhoods V c Ή = H U H(oo) of x = γ(oo) and U c Ή of y =

γ(-oo) such that for any points x* e V and y* e U there is a unique rank one

geodesic γ* in H joining x* to y* such that J*(γ* / (0), γ'(0)) ^ ε for a suitable

parametrization of γ*.

Proof. We need to show only the existence of γ*. Rank one follows from

the choice of ε0 and uniqueness of γ* follows from rank one.
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Let {x* }, { y*} be arbitrary sequences in H such that x* -> x and y* -> y

as « -> +00. Let y* be the geodesic from x* to ;>„*, parametrized so that

d(p,y?) = d(p9y*(0))9 where /? = γ(0). Since γ has rank one it follows from

assertion (*) in the proof of Lemma 2.1 in [2] that d(p,y*) -> 0, and hence

y«*'(0) -> γ'(0) as n -> + oo. By properties of the cone topology of Ή (§2 of

[15]) the proof is complete.

(3.5) Lemma. Let p e H be fixed and let x e //(oo) be a hyperbolic point.

For any neighborhood O* of x in H there exists a neighborhood O of x in H and

a number R > 0 such that if σ is a geodesic in H with endpoints in O and

Ή - O*, thend(p,σ)^ R.

Proof. The set H — O* is compact in //, and there exists a geodesic from

x to q for every q e H — {x} since x is a hyperbolic point. Given a point

q e // - 0 * we can find neighborhoods Oq Q H oϊ q and Vq Q H of x and a

number i ^ > 0 such that if x* e F^ and qf e C^, then there exists a geodesic

σ from qf to x* with d(p,σ) ^ Rq. This is obvious ύ q ^ H and follows from

Lemma 3.4 if q e i/(oo). Now select points qv -,qN ^ H - O* such that

ΪΪ- O* Q Uj l iO^. If O = Πjli K̂  and Λ = m a x { ^ : 1 < / < # } , then O

and i? have the desired properties.

(3.6) Lemma. Let x e //(oo) be a hyperbolic point, and let O* c // (̂oo) Z?e

α neighborhood of x. Then we can find a neighborhood O c /f(oo) of x such that

if y is a geodesic of H with endpoints in O and //(oo) — O*, ί/iefl γ is of rank

one. Moreover each y* e //(oo) - O* fl«J x* G O determine a rank one

geodesic yx*y*.

Proof. For each point y e H(GQ) — {x} there is a unique geodesic joining

x to y and this geodesic is of rank one. For each y e H(ao) - O* there exist

neighborhoods Oy c //(oo) of ^ and F^ c /^(oo) of x such that if y* e O^

and x* e P^, then there is a unique geodesic joining x* to y* and this

geodesic is of rank one (Lemma 3.4). By the compactness of //(oo) - O* there

exist points yl9--,yN in ff(oo) - O* such that //(oo) - O* c UjlxO^. Set

o = (\Uvyr

(3.7) Lemma. Le/ x ^ H(oo) be a hyperbolic point, and let O Q H be a

neighborhood of x. Then

<Pn{H - O) = sup{<p(a,b):a,b G ϊϊ - θ) -^ 0 as n ^> + oo

for any sequence {pn} c H that converges to x.

Proof. Let {pn} Q Hconverge to x and let {xn} c H - O be an arbitrary

sequence. It suffices to prove that <Pn(p, xn) ^ 0 as n -> + oo, where /? e //

is a fixed point. This is clear if {xn} c //̂  is bounded by the law of cosines (see

for example [15, pp. 47-48]). We may assume that xn-> x* e H - 0 by

passing to a subsequence. Let σ, on be the unique geodesies from x to x* and
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from pn to xn respectively. By Lemma 3.4. σw'(0) -» σ'(0) as n -> 4- oo for

suitable parametrizations of σn. Hence d(p,σn(0)) is bounded and <Pn(p,xn)

= <Pn(p, σM(0)) -» 0 as n -> oo be the law of cosines.

(3.8) Corollary. Lei JC, >> fee distinct points in //(oo), α«ί/ /e/ JC be hyperbolic.

Suppose that x, y are dual relative to some subgroup Γ c /(//). Then for any

neighborhoods Ox c H of x and OyQ H ofy there exists an isometry φ e Γ such

that

ψ(H-0x)Q0y and φ-ι(ϊί - Oy) c Ox.

Proof. By hypothesis we can choose a sequence { φn} c Γ so that φnp -* y

and φ^1/? -> x as « -* oo, where p e. H is fixed. By Lemma 3.7

< | , ( φ ϊ l ( ί r - θ J ) = < φ - i / , ( ί f - O , ) - > 0 a s π - +oo.

Since φ π ^ -> 7 and J(/?, 9W(// - O^)) = d(φ~ιp, H - Ox) -» 00 as AI -> 00

we may choose φ = φw for any n sufficiently large.

(3.9) Lemma. Let x e if (00) be a hyperbolic point, and let O* c H be a

neighborhood of x. There exists a neighborhood O c H of x such that if

{qn} Q H — O* is any divergent sequence, then <q(O) -» 0 as n -> 00.

Proof. Fix a point p e //. By Lemma 3.5 there exists a number Z£ > 0 and

neighborhood O Q H of x such that if σ is a geodesic in H with endpoints in

O and // - 0*, then d(p, σ) < Λ. It suffices to prove that <qJίp, xn) -^ 0 for

any sequence { x J c O and any divergent sequence [qn] 0 H — O*. lί σn

denotes the geodesic from qn to xn, then we may choose q% on σn so that

d(P><lZ) < ^ f o r e v e i Ύ Λ τ h e n <qn(P>χ

n) = <qn(P>qϊ) ^ 0 as « -> 00 by
the law of cosines.

(3.10) Lemma. Lei 7/ Atfί e rawλ: one, and let A, B be open sets in H(oo)

such that <p(a, b) ^ δ > 0 for all a ^ A, be B, some point p e H and some

δ > 0. Let xl9 x2 be distinct hyperbolic points in H(oo). Then we can find disjoint

neighborhoods Vl9 V2 in //(oo) ofxv x2 such that for each φ G /(//) at least one

of the following holds:

(l)ψ(V1)ΠA= 0.

(2)φ(Vι)ΠB= 0.

(3)ψ(V2)nA= 0.

(4) ψ(V2) Π B = 0 .

Proof. Fix disjoint neighborhoods Wl9 W2 of xl9 x2 in //. Choose neighbor-

hoods Ov O2 of xv x2 in // with Oi c Ŵ  for / = 1,2. By Lemma 3.9 we can

choose neighborhoods UVU2 of xvx2 in //(oo) such that Uι <z Ot and

<Pn(p,Ui) -> 0 as /? -> 00 for any divergent sequence {/?„} c // - 0/. for

/ = 1,2. Suppose now that the assertion is false. Then for / = 1,2 we can find
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nested neighborhood bases {Vj} at xi in i/(oo) such that Vj c Ut for all n,

and a sequence {<?„} c I(H) such that φn(Fn'') C\ A Φ 0 and φ^F,/) Π 5 # 0

for all n.

We show first that ψ~ι(p) has a cluster point in H(oo). If this were not the

case, then {<pn} would converge to some element φ e /(i/), passing to a

subsequence if necessary [21, p. 167]. The sets <pn(V£) would then ultimately lie

in any given neighborhood in H(oo) of φ(xy) since {Fw

7} is a neighborhood

basis at xr In particular φn(Kn') could not intersect the δ-separated sets A, B

for large n, which contradicts the choice of ψn.

Now let z e i/(oo) be a cluster point of {φ~ι(p)}. Either z e i/(oo) - Ŵ

or z E J7(oo) - ίf2 since Wv W2 are disjoint. Assume for simplicity that

z ^ H(oo) — Wλ and choose a subsequence {φn } so that φ~\p) -> z as

k -> + oo. Assume further that ψn(p) converges to a point z* e H(oo). Then

c / / - 6^ for large k by the definition of Oλ and hence

> ^ « ^ i ) ) = <φ;t{p)(P>ui) -^ 0 as /: -^ +oo by the choice of Uv

Hence the sets φn (1/χ) converge to z*, contradicting the fact that φn (Ux)

contains ψn (V^ ) and hence meets both A and B for all k.

Proof of Theorem 3.1. Let x, y, z, w be distinct points in H(oo) such that z,

w are hyperbolic. Given p e // fix δ > 0 and open neighborhoods A, B, C, D

of x, >>, z, w in H(oo) such that <p{qλ, q2) > δ > 0 for any points #1? ̂ 2 taken

from two different sets of the four possibilities. We assume furthermore that C,

D satisfy the conclusions of Lemma 3.10 relative to A and B. Now choose

neighborhoods Vv V2 in H(oo) of z, w so that Vx Q C, V2 Q D and for any

points zv z2 in Vv H(oo) - C (respectively in V2, H(oo) - D) there exists a

unique rank one geodesic of H with endpoints zλ,z2. This can be done by

Lemma 3.6. Since Γ satisfies the duality condition and H has rank one, any

two points of i/(oo) are dual relative to Γ; the proof is implicit in [2] and

follows explicitly from Lemma 2.3b of [9] and the discussion of (1.5).

Choose elements φv ψv φ2, \p2 inT such that

(a) φχ(i/(oo) -A)QVλ and (^(//(oc) - Vλ) c A,

(b) ψχ(i/(oo) -A)QV2 and ψl\H(ao) - V2) c A,

(c) φ2(H(oo) - B) c Vx and φ2

ι(H(oo) - Vλ) c 5,

(d) ψ 2(#(oo) - B) c K2 and ψ2H^(oo) - K2) c B.

This can be done by Corollary 3.8. Now let ξ G Γ be given arbitrarily. One of

the four possibilities of Lemma 3.10 must occur for ξ relative to A, B, C, D by

the definition of these sets. For simplicity we consider first the case that

ξ(C)Γ)A = 0.Then

(*)
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and hence φλξ has a fixed point zx in Vv (We may assume that all neighbor-
hoods considered are homeomorphic to open disks in IR""1.) Observe that

(Ψlξ)-\H(oo) -C) = {£-YS)(H(oo) - C)

c //(oo) - C

and hence φλξ has a fixed point z2 in //(oo) - C. Therefore φλξ leaves
invariant the unique rank one geodesic γ* joining zλ to z2. Moreover, φ^
fixes no point p of γ*; if φ ^ did fix a point p of γ*, then by identifying C,
Vl9 Vx with subsets of the unit sphere in TpH the inclusion relations of (*)
would imply that the differential map of φxξ at p strictly compresses the set
C, which is impossible for an element of 0{n), n = dim//. Therefore φλξ
translates γ* and φxξ G ^ c Av

We have shown that if ξ(C) Π A = 0 for an element ^ G Γ , then φ x | e 5 1

c yl1. The other three possibilities from Lemma 3.10 are that ξ(C) Π B = 0,
ξ(JD) Π 4̂ = 0, or £ ( D ) n / ? = 0. Arguing as above we show respectively
that φ2ξ, ψxξ, or ψ2ξ are elements of Bv It follows that

Γ = φϊl4x U φlιAλ U ψϊ1^! U ^~2

lAx

which implies that r(Γ) < 1. (If Γ has no elements of finite order, then
r(Γ) = 1 since then Ao is empty.)

We complete the proof by showing that r(Γ) = 1. Suppose that this is false
and write

for suitable elements ξ1, , ^ e Γ . Note that Ao contains only elements of
finite order and each of these elements must be elliptic (have a fixed point in
//). (However, not all elliptic elements of Γ may belong to Ao.) Now choose
distinct points x, y, z,w in //(oo) with z, w hyperbolic and choose neighbor-
hoods A, B, C, D in //(oo) of these points as above so that ίf (C) Π A = 0 for
all /, 1 < / < / : . This is possible since there are only finitely many of the £,
and since hyperbolic points are dense in //(oo). Choose an element φ ^ Γ
satisfying (a) above. The arguments above show that φ ^ translates a geodesic
for each /, 1 < / < &, and in particular φ ^ is not elliptic. On the other hand,
by ( + ) there is an / such that φϊ1 e ^Ao. This implies that ξ'Vϊ1 = (Φiέ/)"1

G Ao and hence both φ^, and its inverse are elliptic, a contradiction. There-
fore r(Γ) = 1.

The discussion above completes the treatment of the rank one case of
Theorem B as stated in the introduction. We now complete the proof of that
result and actually generalize it slightly.
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(3.11) Theorem. Let H be a complete simply connected Riemannian manifold

with sectional curvature satisfying -a2 < K < 0 for some positive constant a. If

Γ is a discrete group of isometries of H such that vol(i//Γ) < oo, then

rank(Γ) = rank(i/).
Proof. If H is a symmetric space of noncompact type, then a finite index

subgroup Γ* of Γ is contained in I0(H\ and we conclude from the result of
Prasad and Raghunathan [27, Theorem 3.9] that

rank(Γ) = rank(Γ*) = r(Γ ) = rank(i/).

Next suppose that H admits no Euclidean de Rham factor and is not a
symmetric space of noncompact type. By Theorem 1.8 we may write H as a
Riemannian product Hs X Hx X XHk, where Hs is a symmetric space of
noncompact type and each Hi for 1 < i < k is a rank one manifold whose
isometry group is discrete and satisfies the duality condition. Of course, the
factor Hs may be absent. By Theorem 1.7 there exists a finite index subgroup
Γ* of Γ such that Γ* is a direct product Ts X I\ X xTk9 where Ts,
I\, , Tk are discrete subgroups of I(HS), /(i^),- , I(Hk) which satisfy the
duality condition. It follows that vol(Hs/Ts) < oo and vol(//ί/(Γ ) < oo for
! < / < / : since vol(i//Γ*) < oo. By Proposition 2.1, Theorem 3.1, and the
symmetric space case just considered we conclude that

k

rank(Γ) = rank(Γ*) = rank(Γs) + £ rank(Γf.)

Suppose now that H has a nontrivial Euclidean de Rham factor of dimen-
sion k ^ 1 and write H — Ek X Hλ where Ek denotes /c-dimensional Euclidean
space and Hι denotes the product of all non-Euclidean de Rham factors of H.
By Lemma 3 of [11] we may choose a finite index subgroup Γo of Γ such that if
Γ* is any finite index subgroup of Γo, then Z(Γ*), the center of Γ*, equals
C(Γ*), the Clifford subgroup of Γ* consisting of all elements of the form
T X {1} in I(H) = I(Ek) X I(Hλ), where T is a translation of Ek. Moreover,
it follows from the main theorem of [13] that Z(Γ*) is a free abelian group of
rank k and hence that Ek/Z(Γ*) is a flat k-torus. We remark that the results
just quoted from [11], [13] are actually stated there under slightly stronger
hypotheses on Γ. However, the results remain true under our hypotheses on Γ,
and the proofs require no modification.

Now let Γ* be any finite index subgroup of Γo, and let p: Γ* -> I(Ek) and
Pi'.T* -» I(Hλ) denote the projection homomorphisms. The group p(T*)
consists of translations of Ek since Z(Γ*) is a lattice of translations in Ek.
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The group I\ =/?1(Γ*)isa discrete subgroup of I{HX) by Lemma A in §2 of
[13]. The projection of H onto Hx induces a projection P of the quotient
spaces H/Γ* onto Hx/Tv where both spaces are smooth Riemannian mani-
folds except on a subset of measure zero. The fibers of P are isometric, totally
geodesic smooth immersions of the flat &-torus Ek/Z(T*) since Z(Γ*) =
C(Γ*) is the kernel of pv Hence vo\HY/Y^) < oo since vol(7//Γ*) < oo and
by the first part of the proof we get

rank(I\) = rank(^) = rank (H) - k.

Now consider an element φ = φe X φx in Γ*, where φe^p(T*) and
ψx e I\ = Pι(T*). Since p(T*) is a group of translations of Ek we see that
/JΪHZΓCΦI)) = ZΓ*(φ) and /?1:ZΓ*(φ) -> Z p ί φ J is a surjective homomor-
phism with kernel Z(Γ*). Moreover, ^{H^) c Γ* is an abelian subgroup if
and only if Δ c I\ is an abelian subgroup. It follows that /?1(̂ 4/ (Γ*)) =
Aj-kiXi) a n ( i ^i(Γ*) = /?J1(^4/_A:(Γ1)), which implies that 4 f (Γ*) is invariant
under multiplication by elements of kernel (pλ) = Z(Γ*). Therefore

N
Γ * = U Φ«Λ(Γ*) for a finite subset {φα} c Γ*

if and only if

We conclude that rank(Γ) = rank(Γ*) = rank(rx) + k = rank(i/).
We conclude this section with the proof of Theorem C as stated in the

Introduction. Suppose that M is an irreducible locally symmetric space of
noncompact type and rank k > 2. The first condition is well known (see for
example Theorem 13.14 of [28]). Conditions (2) and (3) are necessary by the
splitting result Theorem 1.6 and the results of Prasad and Raghunathan
respectively. Suppose next that M is a space of finite volume and bounded
sectional curvature that satisfies the three conditions given. The first two
conditions and Theorem 1.9 imply that the universal cover H of M admits no
Euclidean de Rham factor. The second condition implies that M is irreducible.
Theorems 1.7, 1.8, and the second condition imply that either H is a rank one
space or H is a symmetric space of noncompact type. The third condition and
Theorem 3.1 imply that rank(//) = k ^ 2.
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4. Some examples

We first discuss two examples that show that r(T) may be strictly smaller
than rank(Γ), even if H/T is locally symmetric.

Example 1. Let Γ be the fundamental group of a flat Klein bottle, acting
by isometries on the Euclidean plane E2. (In the simplest case Γ is generated
by φ1: (x, y) -» (x + 1, -y) and φ 2 : (x, y) -» (x, y + 1).) The set ^ consists
of all elements of Γ that reverse the orientation of E2. Since the map Γ -> Z 2

sending orientation preserving elements to 0 and orientation reversing elements
to 1 is a homomorphism and since Ax is the preimage of 1, it follows that
Γ = eAγ U yAl9 where γ e ^ is arbitrary. Therefore r(Γ) < 2 = rank(Γ) =
rank(£2). Similarly it can be shown that a Bieberbach group Γ of rank k, that
is, a discrete uniform group Γ of isometries of /^-dimensional Euclidean space
Ek, satisfies

r(Γ) <k = rank(Γ) = rank(£*)

unless Γ is free abelian of rank k. Note, however, that a Bieberbach group of
rank k always has a free abelian group of rank A: as a subgroup of finite index.

Example 2. Let H denote the hyperbolic plane with Gaussian curvature
- 1 . If we regard H as the upper half-plane with metric ds2 =
(l/y2)(dx2 + dy2), then I0(H) is the group PSL(2,R) = SL(2,R)/{±/} act-
ing by fractional linear transformations. We now construct a lattice subgroup
Γo of I(H X H) with r(Γ0) = 1 and rank(Γ0) = rank(# X H) = 2 such that
H X H/To is a smooth, nonorientable, locally symmetric manifold of finite
volume, which may be chosen to be either compact or noncompact. This
example does not contradict the result of Prasad and Raghunathan mentioned
earlier, since Γo <£ I0(H X H) = PSL(2,R) X PSL(2,R).

Let Γ c PSL(2, R) be a lattice, either uniform or nonuniform, with no
elements of finite order. For any element r Φ 1 in Γ there exists a normal
subgroup Γ* of finite index such that τ e Γ - Γ * (residual finiteness of Γ).
Choose Γ, Γ*, and T SO that the image of T in Γ/Γ* has even order.
The isometry group of (H/T*) X (H/T*) is finite and isomorphic to
iV(Γ* X Γ*)/Γ* X Γ*, where N(T* XT*) denotes the normalizer in
I(H X H) of Γ* X Γ*. Let μ G N(T* X Γ*) be the element given by μ(x, y)
= (τ>>, JC), and let Γo be the finite index subgroup of N(T* X Γ*) generated
by Γ* X Γ* and μ.

We assert that no nonidentity element of Γo has a fixed point in H X H and
that the coset (Γ* X Γ*) μ lies entirely in ^ ( Γ Q ) . This will show that
H X H/TQ is a smooth manifold with r(T0) = 1 although rank(Γ0) =
rank(Γ* X Γ*) = 2.
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We show first that no element of Γo has a fixed point in H X H. Since μ

normalizes Γ* X Γ*, every element of Γo has the form ( φ } X φ 2 ) μr, where

Ψi x Ψi G Γ* X Γ* and r is an integer. If (φ x X φ 2 ) μ2k = (φλ X φ 2 )

(τk X τk) fixes a point (x, >>)> then φιτ
kx = x and φ2τ

ky = y. Since Γ has no

elliptic elements it follows that φιτ
k = φ2τ

k = 1 and hence (φ x X φ 2 ) μ2k = 1.

An element of the form (φ x X φ 2) μ2 / c + 1 fixes a point (JC, j>) if and only if

ψ\Tk + 1y = x and φ2τ
kx = y. In this case (φ2τ

kψιτ~k)τ2k+ι = φ2τ
kφιτ

k+ι

fixes j> and hence must be the identity since Γ contains no elliptic elements.

Therefore τ2k + ι e Γ* since r normalizes Γ*, but this contradicts the assump-

tion that the image of T in Γ/Γ* has even order.

We next consider the centralizer in Γo of an element i n ( Γ * x Γ * ) μ. Let

φ = (φλ X φ 2 ) μ be such an element and let G = Z Γ o (φ) Π (Γ* X Γ*), a

subgroup of finite index in Z Γ o (φ). To show that (Γ* X Γ*) μ c v4x(Γ0) it

suffices to show that G is infinite cyclic. An element ^ X ξ 2 G Γ* X Γ*

commutes with (φλ X φ 2) μ e (Γ* X Γ*) μ if and only if

(a) ^ΦxT = φ x τξ 2 and

(b) £ 2 φ 2 = φ ^ .

These conditions imply that ξx commutes with ψ1τφ2, which is a nonidentity

element of Γ since T E Γ - Γ*. Note that Z Γ ( φ 1 τ φ 2 ) is infinite cyclic since Γ

is a discrete subgroup of PSL(2, R) with no elements of finite order. If a e Γ is

a generator for Z Γ (φ 1 τφ 2 ) , then ξλ = am for some integer m and ξ2 = φ ^ φ ^ 1

= ( φ 2 « φ 2

1 ) w by (b) above. Therefore G is a subgroup of the infinite cyclic

group with generator a X (φ 2 «φ 2

1 ).

Remark. If the image of r in .Γ/Γ* has odd order, then the group Γo

constructed above always has elliptic elements.

Example 3. This is an example where Γ satisfies (2) in Theorem C of the

Introduction and rank(Γ) = 2, but where M is not locally symmetric, showing

that condition (1) cannot be deleted. This example also shows that the

hypothesis in Theorem 1.9 that Γ be finitely generated cannot be deleted. Our

construction is similar to one given by Gromov [17].

For all m ^ 2, let Fm be a surface of nonpositive curvature bounded from

below by some constant -a2 and finite volume < m C such that

(i) a neighborhood of the boundary of Fm is isometric to a disjoint union of

m copies of [0, εm) X S}m_χ and m copies of [0, εm) X S}m+ι, where rm = 2~m

and S} denotes a circle of radius r.

(ii) Zm operates isometrically on Fm with a fixed point pm (there may be

others as well) such that Fm/Zm has two boundary components, a neighbor-

hood of one component being isometric to [0, εm) X S) γ and a neighborhood

of the other one being isometric to [0, εm) X S} ' .
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For m ̂  2 let

Vm=(FmXSlxS}m)/Zm9

where Z m acts by y(p,t,s) = (y(p\y(t\s) and γ(/) denotes the canonical
action of Zm on S{. Note that Vm, m > 2, has two boundary components, a
neighborhood of one component isometric to

[0,εJ X ̂  , X Si X ^

and a neighborhood of the other component isometric to

[0,εJ X S}m+ι X Si X ^ .

Hence Vm and F w + 1 can be glued together along the appropriate boundary
components by the canonical isometry of

S}m+ι X S\ X S}m with Si X Si X S ^ .

This glueing procedure, performed for all m ̂  2, yields a manifold Fo with
one boundary component, a neighborhood of which is isometric to

[0,e2) X S* X Si X S*.

Take an isometric copy Vγ of Vo and glue Fo and Vλ along their boundaries. As
a result we obtain a complete Riemannian manifold M without boundary and
of nonpositive curvature bounded from below by -a2. Note that the volume of
M is finite since

< C 4ττ2 2 ' m .

The rank of Γ, the fundamental group of M, is two. H contains a Euclidean
factor of dimension one, coming from the Si's.

We conclude the discussion of the example by showing that Γ has no finite
index subgroup Γ* that is a nontrivial direct product I\ X Γ2, and in
particular this shows that no finite cover of M = H/T can be diffeomorphic to
Sι X M\ where M' has dimension 3. We argue by contradiction and assume
that Γ does admit such a finite index subgroup Γ* = I\ X Γ2. The group Γ*
satisfies the duality condition by (1.5), and it follows from the corollary to
theorem 1 of [29] that H admits a Γ*-invariant splitting

H = HQ x Hγ x a2

which satisfies the following conditions: (1) Ho is a Euclidean space of
dimension s > 0. (2) Every element φ of I\ can be written as φ = (φo,φvl)
e I(H0) X I(Hλ) X I(H2) and every element ψ of Γ2 can be written as
ψ = (ψ 0,1, ψ2), where φ0 and ψ0 are translations on Ho. Of course, any one of
the factors i/0, Hl9 H2 may be trivial but at least two of the factors must be
nontrivial. We consider separately the cases (1) one of the factors Hv H2 is
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trivial, and (2) the factors Hl9 H2 are both nontrivial. In the discussion below

let pt: Γ -> /(//,-) denote the projection homomoφhism for 0 < / < 2.

In case (1) we may assume without loss of generality that the factor H2 is

trivial. Hence H = H0X Hl9 where Ho has dimension 1 and Hx has no

Euclidean factor. Moreover Φ = (φo»Φi) f°Γ Φ G A a n ί ^ Ψ = (ΨoΊ) ^O Γ

ψ G Γ 2 , where φ 0 and ψ 0 are translations on Ho. We show first that Γ2 = Z*,

the center of Γ*. Clearly Γ2 c Z * since translations on Ho commute. To

prove the reverse inclusion observe that Pι(T*) c I(HX) satisfies the duality

condition in Hλ by (1.5) and hence Pχ(Γ*) has trivial center by Theorem 4.2

of [8] and the fact that Hλ has no Euclidean de Rham factor. It follows that an

element φ & Z* has the form φ = (φ0,1), where φ 0 is a translation on Ho.

Hence Z * is an infinite cyclic group and the subgroup Γ2 is also infinite cyclic

with finite index k for some integer k > 1. If φ = (Φ0Λ) is an arbitrary

element of Z*, then we write φ = ψ xψ 2, w n e r e Ψ, G Γf for / = 1,2. Since

Ψi = ΦΨ21 G z* ^ follows that ψ{ G Γ2 n I\ = {1} and hence ψx = 1 since

every element of Γ* has infinite order. Therefore Z * c Γ2 and equality

follows.

For each positive integer m there exists a point qm^ M = H/T and a

simple, closed geodesic γm c M of length 2π/m that passes through qm and is

tangent to the 1-dimensional local Euclidean de Rham factor of M. To

construct qm and γm let q* = (Pma,β)e V* = FmX Si X S}m, where α, /?

are arbitrary and pm G F w is a point fixed by Z m . Let γ^ c V* be the circle

of length 2π through q* that is tangent to the Si factor of Fw*. Now let qm, ym

be the projections of q*, γ* into Vm = F m */Z m .

Let γm c i/ be a lift of γm, and let φm G Γ be an element that translates γm

by an amount ± 2π/m. Choose an integer Nm such that 1 < Nm < [Γ: Γ*] and

φNm e r * . It follows from the construction of ym that ym(t) = (t + tm9 rm) e

Ho X Hx for all / G R, some rw G i/0 = R and some rm G //^ Since φ^-

translates γ w by ±2πNm/m it follows from property (2) of the splitting

H = H0X HλX H2 that we may write

where α m is a translation on i/ 0 by ±2πNm/m and ^βw fixes rm. The group

/?1(Γ) c I{Hλ) is discrete by Lemma A of [13], and hence β^m = 1 for some

positive integer km. Now write

€m = ΦX*,
where φ* e Γx and φ** G Γ2. It follows that φ** = « * , 1) for some transla-

tion < * on i/0 and φ* = ( α j α * * ) " 1 ^ . ) . In particular ( φ * ) ^ E Z * = Γ 2

and hence φ* = 1 since Γx Π Γ2 = {1} and all elements of Γ* have infinite

order. Hence φ£« = (αm, 1) G Z* = Γ2 for every /w. However, if φ* = (a, 1) is
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a generator for Z*, where a is a translation by a > 0 on //0, then φ%»> = (φ*)>«

for some nonzero integer j m and hence am = α7™ is a translation on i/ 0 by the

amount jma for every m. This contradicts the fact that am is a translation on

Ho by ±2πNm/m -> 0 as m -> oo since 1 < iVw < [Γ:Γ*] . Hence case (1)

cannot arise.

Next, we consider case (2) in which both factors Hλ and H2 are nontrivial.

The fact that H has dimension 4 and a Euclidean factor of dimension 1

implies that the factor HQ is trivial, and hence M * = i//Γ* is isometric to the

Riemannian product (Hγ/T^ X (H2/T2) by property (2) of the splitting

H = Ho X Hλ X H2. One of these factors Hλ or H2, say the former, must have

a Euclidean factor since H does, if would have a 2-dimensional Euclidean

factor if Hλ had either dimension 2, in which case Hλ is Euclidean, or

dimension 3, in which case H2 has dimension 1. Therefore Hλ has dimension 1

and through all points of M * there are simple parallel closed geodesies of

constant length a > 0 that are tangent to the local Euclidean factor of M *.

However, the argument above in the discussion of case (1) shows that for every

positive integer m there exists a positive integer Nm with 1 < Nm < [Γ:Γ*]

and a closed geodesic γ * c M * of length 2iτNm/m which is tangent to the

local Euclidean factor of M*. In particular, if m is sufficiently large, then

2πNm/m < a and it is impossible to have a simple closed geodesic in M * of

length a that is tangent to the local Euclidean factor of M * and passes

through a point of γ^; such a closed geodesic would be tangent to and hence a

reparametrization of γ^. This contradiction completes the proof that Γ admits

no finite index subgroup Γ* = I\ X Γ2.
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