FUNDAMENTAL GROUPS OF MANIFOLDS OF NONPOSITIVE CURVATURE

WERNER BALLMANN \& PATRICK EBERLEIN

Introduction

The universal covering space H of a complete Riemannian manifold M of nonpositive sectional curvature is diffeomorphic to $\mathbf{R}^{n}, n=\operatorname{dim}(M)$. Hence the homotopy type of M is completely determined by the isomorphism class of the fundamental group Γ of M. It is, therefore, only natural to expect strong relations between the geometric structure of M and the algebraic structure of Γ. In this paper we obtain several such relations:

A general assumption in the results we state below is that
(1) the sectional curvature is nonpositive and bounded from below by some constant $-a^{2}$ and
(2) the volume of M is finite.

We define the rank of a unit tangent vector v of $M, \operatorname{rank}(v)$, to be the dimension of the space of all parallel Jacobi fields along the geodesic γ_{v} which has initial velocity v. The minimum of $\operatorname{rank}(v)$ over all $v \in S M$ is called the rank of M. This agrees with the usual rank if M is a locally symmetric space. Manifolds of rank one resemble manifolds of strictly negative curvature (see [2] [3], and §2 below). Manifolds of higher rank are studied in [5], [6], [7], and [3], and the conclusive result is that H is a space of rank one, or a symmetric space, or a Riemannian product of such spaces. This is the basic ingredient in the proofs of our results; it allows us, more or less, to consider only the cases that H is of rank one or a symmetric space.

As a first example of this principle we indicate in our preliminary section the proof of the following theorem.

Theorem A. Either M is flat or Γ contains a nonabelian free subgroup.
This is an improvement of the result of Avez [1] that Γ has exponential growth if M is compact and not flat.

Following Prasad and Raghunathan [27] we define the subset A_{i} of Γ to consist of those elements whose centralizer contains a free abelian group of rank at most i as a subgroup of finite index. Note that

$$
A_{0} \subset A_{1} \subset A_{2} \subset \cdots
$$

We define $r(\Gamma)$ to be the minimal integer i such that Γ can be written as a finite union

$$
\Gamma=\gamma_{1} A_{i} \cup \gamma_{2} A_{i} \cup \cdots \cup \gamma_{m} A_{i}
$$

of left translates of $A_{i}, \gamma_{1}, \cdots, \gamma_{m} \in \Gamma$ arbitrary.
A result of Prasad and Raghunathan in [27] states that $r(\Gamma)$ is equal to the rank of the symmetric space G / K of noncompact type if Γ belongs to the identity component of G. (This does not imply that $r(\Gamma)=\operatorname{rank}(M)$ if M is a locally symmetric space, cf. §4.) We set

$$
\operatorname{rank}(\Gamma)=\max \left\{r\left(\Gamma^{*}\right) \mid \Gamma^{*} \text { a finite index subgroup of } \Gamma\right\}
$$

Theorem B. $\quad \operatorname{rank}(M)=\operatorname{rank}(\Gamma)$.
Since the homotopy type of M is determined by the fundamental group Γ we obtain the following immediate consequences of Theorem B.

Corollary 1. The rank of M is a homotopy invariant of M.
Corollary 2. If M is compact, then the ergodicity or nonergodicity of the geodesic flow in the unit tangent bundle SM is a homotopy invariant of M.

In the special case that M is compact and of rank one the first corollary was obtained in [10]. With regard to the second corollary it was shown in [4] that the geodesic flow is ergodic if M is compact and of rank one, and the converse assertion was proved in Theorem 4.5 of [6].

As a further application of Theorem B we obtain a characterization of irreducible locally symmetric spaces of noncompact type and rank at least two in terms of algebraic data in the fundamental group. Here a Riemannian manifold is called irreducible if none of its finite coverings is a Riemannian product.

Theorem C. M is an irreducible locally symmetric space of noncompact type of rank $k \geqslant 2$ if and only if Γ satisfies the following three conditions:
(1) Γ is finitely generated.
(2) No finite index subgroup of Γ is a direct product.
(3) $\operatorname{rank}(\Gamma)=k \geqslant 2$.

Remark. Clearly condition (1) can be deleted if M is assumed to be compact. In combination with (2) it implies that the universal cover H does not contain a Euclidean factor (see (1.9) below). One may replace (1) by the assumption that Γ does not contain a proper normal abelian subgroup; this also excludes Euclidean factors in H by the main theorem of [13].

Applying the celebrated rigidity results of Mostow [26] and Margulis [24], [25] Theorem C has the following consequence.

Theorem D. Suppose Γ is isomorphic to the fundamental group Γ^{*} of an irreducible locally symmetric space M^{*} of noncompact type and rank at least two. Then M and M^{*} are isometric up to rescalings of the metric of M^{*}.

Under the assumption that M is compact this was proved by Gromov [18], [19], and, in a special case, by Eberlein [14].

The paper is organized as follows. §1 introduces notation and relevant results, and we use these results to prove Theorem A. In §2 we define and discuss the rank of an abstract group. Our main result here is that the rank of a direct product is the sum of the ranks of the factors, and that the rank is unchanged under passage to a finite index subgroup. Combined with (1.7) and (1.8) below this reduces Theorem B to the two cases that M has rank one or is locally symmetric, the second of which is Theorem 3.9 of [27]. In $\S 3$ we prove Theorems B and C. §4 contains examples. The first two examples illustrate the fact that Theorem B is false if $\operatorname{rank}(\Gamma)$ is replaced by $r(\Gamma)$, even if $M=H / \Gamma$ is locally symmetric. The third example shows the necessity of the first hypothesis of Theorem C.

We are grateful to R. Spatzier for bringing the results of Prasad and Raghunathan to our attention.

1. Preliminaries

(1.1) Notation. In general we shall use the notation and basic results of [15]. See also §1 of [5]. In this paper all manifolds considered are complete, connected Riemannian manifolds of nonpositive sectional curvature. M will always denote a manifold with finite volume and H will always denote a simply connected manifold. The unit tangent bundles are denoted by $S M, S H$, and $\pi: S M \rightarrow M, S H \rightarrow H$ denotes the projection map. All geodesics of M or H are assumed to have unit speed. If v is a unit vector in $S M$ or $S H$, then γ_{v} denotes the geodesic with initial velocity v. The Riemannian metric on M, H induces a natural Riemannian metric on $S M, S H$, and the corresponding distance functions are denoted by d on M, H and by d^{*} on $S M, S H$. The isometry group of H is denoted by $I(H)$, and the connected component of $I(H)$ that contains the identity is denoted by $I_{0}(H)$.
(1.2) Asymptotes and points at infinity. Two unit speed geodesics γ, σ of H are said to be asymptotes if $d(\gamma t, \sigma t) \leqslant c$ for some positive constant c and for all $t \geqslant 0$. An equivalence class of asymptotes is a point at infinity for H, and $H(\infty)$ denotes the set of all points at infinity for H. We let $\gamma(\infty)$ and $\gamma(-\infty)$ denote the points at infinity determined by γ and $\gamma^{-1}: t \rightarrow \gamma(-t)$. Given points
$p \in H$ and $x \in H(\infty)$ there is a unique unit speed geodesic $\gamma_{p x}$ such that $\gamma_{p x}(0)=p$ and $\gamma_{p x}$ belongs to x. The space $\bar{H}=H \cup H(\infty)$ with a natural topology is homeomorphic to the closed unit n-ball, and for each point p in H the map $x \rightarrow \gamma_{p x}^{\prime}(0)$ is a homeomorphism of $H(\infty)$ onto the unit ($n-1$)-sphere in $T_{p} H$. Isometries of H extend in an obvious way to homeomorphisms of $H(\infty)$.

Given $p \in H$ and $x \in H(\infty)$ the restriction to $[0, \infty]$ of $\gamma_{p x}$ is said to join p and x or to have endpoints p and x. Similarly, if x, y are distinct points in $H(\infty)$, then a maximal geodesic γ is said to join x and y or to have endpoints x and y if $\gamma(\infty)=x$ and $\gamma(-\infty)=y$ (or $\gamma(\infty)=y$ and $\gamma(-\infty)=x$). The geodesic (when this is unique) joining distinct points x, y in \bar{H} will be denoted by $\gamma_{x y}$. Our convention is that $\gamma_{x y}(0)=x$ if x is a point of H.
(1.3) Rank of a manifold [5]. For each unit vector v in $S H$ or $S M$ we define $r(v)$ to be the dimension of the space of parallel Jacobi vector fields defined on the maximal geodesic $\gamma_{v}: \mathbf{R} \rightarrow H$ or $\mathbf{R} \rightarrow M$. We define $\operatorname{rank}(H)$ (or $\operatorname{rank}(M)$) to be the minimum of the integers $r(v)$ over all vectors v in $S H$ (or $S M$). Clearly $\operatorname{rank}(H)=\operatorname{rank}(M)$ if H covers M, and the rank of a product manifold is the sum of the ranks of the factors. A vector v in $S H$ or $S M$ is called regular if $r(v)=\operatorname{rank}(H)$ or $\operatorname{rank}(M)$. If H admits a smooth quotient manifold M of finite volume, then the regular vectors of $S H(S M)$ form a dense open subset of $S H(S M)$ by Theorem 2.6 of [5].
(1.4) The De Rham decomposition [22]. A complete, simply connected Riemannian manifold X is irreducible if it cannot be written as a Riemannian product $X_{1} \times X_{2}$ of two Riemannian manifolds of positive dimension. A reducible space X has a Riemannian product decomposition

$$
X=X_{0} \times X_{1} \times \cdots \times X_{k}
$$

where X_{0} is a Euclidean space and each X_{i} is irreducible for $1 \leqslant i \leqslant k$. This decomposition of de Rham is unique up to isometric equivalence and ordering of the factors X_{1}, \cdots, X_{k}.

If $H=H_{1} \times \cdots \times H_{k}$ is any Riemannian product decomposition of a simply connected manifold H of nonpositive curvature, then a subgroup $\Gamma \subseteq I(H)$ is said to preserve the factors of the decomposition if the foliations of H induced by the factors are left invariant by Γ. In this case every element φ of Γ can be written $\varphi=\varphi_{1} \times \varphi_{2} \times \cdots \times \varphi_{k}$, where $\varphi_{i} \in I\left(H_{i}\right)$, and one obtains projection homomorphisms $p_{i}: \Gamma \rightarrow I\left(H_{i}\right)$ given by $p_{i}(\varphi)=\varphi_{i}$ for all $1 \leqslant i \leqslant k$. If H has no Euclidean de Rham factor, then each factor H_{i} above is a Riemannian product of some subset of the de Rham factors of H. Since every subgroup Γ of $I(H)$ has a finite index subgroup Γ^{*} that preserves the factors of the de Rham decomposition of H, it follows that Γ^{*} preserves the
factors of all product decompositions of H whenever H has no Euclidean de Rham factor.
(1.5) Duality condition [8], [2]. Two points x, y in $H(\infty)$ are said to be dual relative to a group $\Gamma \subseteq I(H)$ if there exists a sequence $\left\{\varphi_{n}\right\} \subseteq \Gamma$ such that $\varphi_{n}(p) \rightarrow x$ and $\varphi_{n}^{-1}(p) \rightarrow y$ as $n \rightarrow \infty$ for any point p in H. Given a point $x \in H(\infty)$ the set of points y in $H(\infty)$ that are dual to x relative to Γ is closed in $H(\infty)$ and invariant under Γ. A group $\Gamma \subseteq I(H)$ is said to satisfy the duality condition if for every geodesic γ of H the points $\gamma(\infty)$ and $\gamma(-\infty)$ are dual relative to Γ.

The duality condition may be restated in the following useful form (cf. [2, p. 137]). For any group $\Gamma \subseteq I(H)$ one defines a nonwandering set $\Omega(\Gamma) \subseteq S H$ as follows: A vector $v \in S H$ lies in $\Omega(\Gamma)$ if and only if for every neighborhood $O \subseteq S H$ of v and every positive number A there exists $t \geqslant A$ and $\varphi \in \Gamma$ such that $\left[\left(d \varphi \circ g^{t}\right)(0)\right] \cap O$ is nonempty, where $\left\{g^{t}\right\}$ denotes the geodesic flow. The condition that Γ satisfy the duality condition is then precisely the condition that $\Omega(\Gamma)=S H$.

If $\Gamma \subseteq I(H)$ is a discrete group such that the quotient space H / Γ has finite volume, then Γ satisfies the duality condition. For any group Γ that satisfies the duality condition one also has the following useful properties:
(1) If Γ^{*} is a finite index subgroup of a group Γ that satisfies the duality condition, then Γ^{*} satisfies the duality condition.
(2) If H is a Riemannian product $H_{1} \times H_{2}$ and if $\Gamma \subseteq I\left(H_{1} \times H_{2}\right)$ is a subgroup that satisfies the duality condition and preserve the factors of the decomposition, then $p_{i}(\Gamma)$ is a subgroup of $I\left(H_{i}\right)$ that satisfies the duality condition for $i=1,2$, where $p_{i}: \Gamma \rightarrow I\left(H_{i}\right)$ is the projection homomorphism.

The projection $p_{i}(\Gamma)$ need not be discrete in $I\left(H_{i}\right)$ even if Γ is discrete in $I(H)$. The restriction in (2) that Γ preserve the factors of the decomposition is usually not serious. One can usually reduce a given problem to the case that H has no Euclidean factor (cf. the proof of Theorem B in §3). By (1.4) one may then pass to a subgroup Γ^{*} of finite index which preserves the factors of the decomposition, and by (1) above Γ^{*} still satisfies the duality condition.

Splitting theorems. If $\Gamma \subseteq I(H)$ satisfies the duality condition, then an algebraic splitting of Γ corresponds very closely to a geometric splitting of H.
(1.6) Theorem. Let H admit no Euclidean de Rham factor, and let $\Gamma \subseteq I(H)$ satisfy the duality condition. If Γ is a direct product $\Gamma_{1} \times \Gamma_{2}$, then H splits as a Riemannian product $H_{1} \times H_{2}$ such that $\Gamma_{1} \subseteq I\left(H_{1}\right) \times\{1\}$ and $\Gamma_{2} \subseteq\{1\} \times$ $I\left(\mathrm{H}_{2}\right)$. In particular, if Γ is discrete and H / Γ is a smooth manifold of finite volume, then H / Γ is isometric to $\left(H_{1} / \Gamma_{1}\right) \times\left(H_{2} / \Gamma_{2}\right)$.
(1.7) Theorem. Let H be a Riemannian product $H_{1} \times H_{2}$ such that H has no Euclidean de Rham factor and $I\left(H_{2}\right)$ is discrete. Let $\Gamma \subseteq I(H)$ be a discrete
group such that the quotient space H / Γ has finite volume. Then Γ has a finite index subgroup Γ^{*} that is a direct product $\Gamma_{1}^{*} \times \Gamma_{2}^{*}$, where $\Gamma_{1}^{*} \subseteq I\left(H_{1}\right) \times\{1\}$ and $\Gamma_{2}^{*} \subseteq\{1\} \times I\left(H_{2}\right)$. In particular if H / Γ is a smooth manifold, then H / Γ^{*} is a Riemannian product $\left(H_{1} / \Gamma_{1}^{*}\right) \times\left(H_{2} / \Gamma_{2}^{*}\right)$ that finitely covers H / Γ.

The first of these results is a special case of the corollary to Theorem 1 of [29]. The result in [29] itself generalizes results of [16] and [23], who proved the result in the case that Γ is a discrete centerless group and H / Γ is a smooth compact manifold. The second of the results stated above follows from Theorem 4.1 and Proposition 2.2 of [9]. These two results of [9] are actually stated for discrete groups Γ such that the quotient space H / Γ is a smooth manifold of finite volume, but the proofs remain valid in this generality and require at most trivial modifications.
(1.8) Theorem. Let H have sectional curvature satisfying $-a^{2} \leqslant K \leqslant 0$ for some positive constant a, and let $\Gamma \subseteq I(H)$ be a discrete group such that the quotient space H / Γ has finite volume. Then H is a Riemannian product

$$
H=H_{0} \times H_{S} \times H_{1} \times \cdots \times H_{k}
$$

where H_{0} is a Euclidean space with its canonical flat metric, H_{S} is a symmetric space of noncompact type, and, for $1 \leqslant i \leqslant k, H_{i}$ is a rank one manifold such that $I\left(H_{i}\right)$ is discrete and satisfies the duality condition.

Of course, any of the factors in the decomposition above could be absent. The result may be true without the bounded curvature restriction and with only the single hypothesis that $I(H)$ satisfy the duality condition. The result as stated follows immediately from Proposition 4.1 of [12] and the discussion in §1 of [3], especially Theorem 1.4 (see also [7]).

Spaces with Euclidean de Rham factors.

(1.9) Theorem. Let H be a Riemannian product $E^{k} \times H_{1}$, where E^{k} is a flat Euclidean space of dimension $k \geqslant 1$ and H_{1} has no Euclidean de Rham factor. Let $\Gamma \subseteq I(H)$ be a finitely generated discrete group such that $M=H / \Gamma$ is a smooth manifold of finite volume. Then M admits a finite Riemannian cover that is diffeomorphic (but not necessarily isometric) to a Riemannian product $T^{k} \times$ M_{1}, where T^{k} denotes a flat k-torus and M_{1} is a smooth Riemannian quotient of H_{1}.

The special case in which H / Γ is compact is Corollary 2 of [13]. The proof of that result actually proves the result stated above. The hypothesis that Γ be finitely generated cannot be deleted (see §4).

The results (1.6), (1.7), (1.8), and (1.9) will be needed later to prove Theorems B and C of the Introduction. We now use the third of these results to prove Theorem A. We assume that $M=H / \Gamma$ is not flat.

Proof of Theorem A. By Theorem 1.8 and the hypotheses of Theorem A we may write H as a Riemannian product

$$
H=H_{0} \times H_{S} \times H_{1} \times \cdots \times H_{k}
$$

as described in Theorem 1.8, where either the symmetric space factor H_{S} exists or the rank one factor H_{1} exists. Let Γ^{*} be a finite index subgroup of Γ that preserves the factors of the decomposition, and let $p_{0}: \Gamma^{*} \rightarrow I\left(H_{0}\right), p_{S}: \Gamma^{*} \rightarrow$ $I\left(H_{S}\right)$, and $p_{i}: \Gamma^{*} \rightarrow I\left(H_{i}\right)$ for $1 \leqslant i \leqslant k$ be the corresponding projection homomorphisms.

If H admits a rank one de Rham factor H_{1}, then the group $p_{1}\left(\Gamma^{*}\right)$ satisfies the duality condition in H_{1} (see (1.5)), and hence $p_{1}\left(\Gamma^{*}\right)$ contains a nonabelian free subgroup F_{1} by Theorem 3.2 of [2]. It then follows that $F=p_{1}^{-1}\left(F_{1}\right)$ contains a nonabelian free subgroup in Γ^{*}.

If H admits a symmetric space factor H_{s}, then we consider the group $\Gamma^{* *}=p_{S}^{-1}\left[p_{S}\left(\Gamma^{*}\right) \cap I_{0}\left(H_{S}\right)\right]$. Note that $\Gamma^{* *}$ has finite index in Γ^{*} since $I_{0}\left(H_{S}\right)$ has finite index in $I\left(H_{S}\right)$, and clearly $p_{S}\left(\Gamma^{* *}\right) \subseteq I_{0}\left(H_{S}\right)$. The group $I_{0}\left(H_{S}\right)$ is a semisimple Lie group with trivial center and no compact factors, and hence it may be identified faithfully under the adjoint representation with a subgroup of $\operatorname{SL}(n, \mathbf{R}), n=\operatorname{dim} I_{0}(H)$. By Theorem 1 of [30] (see also [20]) $p_{s}\left(\Gamma^{* *}\right)$ either contains a nonabelian free subgroup F_{S} or admits a solvable subgroup of finite index. It suffices to prove that the second possibility cannot occur, for then $F=p_{S}^{-1}\left(F_{S}\right)$ will contain a nonabelian free subgroup of $\Gamma^{* *}$. The group $p_{S}\left(\Gamma^{* *}\right)$ satisfies the duality condition in H_{S} by earlier remarks in (1.5) since $\Gamma^{* *}$ has finite index in Γ. If $p_{S}\left(\Gamma^{* *}\right)$ did admit a solvable subgroup of finite index, then H_{S} would be isometric to a Euclidean space by Theorem 5.1 of [8], which is not the case.

2. The rank of a group

Let Γ be an abstract group. Given an element φ in Γ, let $Z_{\Gamma}(\varphi)$ denote the centralizer of φ in Γ. As in the Introduction we denote by $A_{i}(\Gamma)$ the subset of Γ that consists of elements φ such that $Z_{\Gamma}(\varphi)$ contains a free abelian subgroup of rank $\leqslant i$ as a subgroup of finite index. We define

$$
\begin{aligned}
& r(\Gamma)=\min \{i: \text { there exist finitely many } \\
& \left.\quad \text { elements } \varphi_{j} \in \Gamma \text { such that } \Gamma=\bigcup_{j} \varphi_{j} \cdot A_{i}(\Gamma)\right\}
\end{aligned}
$$

and set

$$
\operatorname{rank}(\Gamma)=\sup \left\{r\left(\Gamma^{*}\right): \Gamma^{*} \subseteq \Gamma \text { is a finite index subgroup }\right\}
$$

We allow the possibility that $r(\Gamma)=\operatorname{rank}(\Gamma)=0$ (e.g. Γ is finite), and we set $r(\Gamma)=\operatorname{rank}(\Gamma)=+\infty$ if the sets $A_{i}(\Gamma)$ are empty or if Γ is not covered by finitely many translates of any of the sets $A_{i}(\Gamma)$. We are primarily interested in the case that Γ is a countably infinite group that arises as a discrete group of isometries of some nonpositively curved space H. The distinction between $r(\Gamma)$ and $\operatorname{rank}(\Gamma)$ is a necessary technical complication (see §4).

The main result of this section is the following:
(2.1) Proposition. Let Γ be an abstract group.
(1) If Γ^{*} is a finite index subgroup of Γ, then $\operatorname{rank}\left(\Gamma^{*}\right)=\operatorname{rank}(\Gamma)$.
(2) If $\Gamma=\Gamma_{1} \times \cdots \times \Gamma_{k}$, a direct product, then

$$
r(\Gamma)=\sum_{i=1}^{k} r\left(\Gamma_{i}\right) \quad \text { and } \quad \operatorname{rank}(\Gamma)=\sum_{i=1}^{k} \operatorname{rank}\left(\Gamma_{i}\right)
$$

The proof of this result will be carried out in several steps.
(2.2) If $\Gamma^{*} \subseteq \Gamma$ is a finite index subgroup, then $r(\Gamma) \leqslant r\left(\Gamma^{*}\right)$ and $\operatorname{rank}(\Gamma)$ $=\operatorname{rank}\left(\Gamma^{*}\right)$.

Proof. The inequality follows since $A_{i}\left(\Gamma^{*}\right) \subseteq A_{i}(\Gamma)$ for all i, and as a consequence we get $r(\Gamma) \leqslant r\left(\Gamma^{*}\right)$. As for the second claim, clearly $\operatorname{rank}(\Gamma) \geqslant$ $\operatorname{rank}\left(\Gamma^{*}\right)$. If $\tilde{\Gamma}$ is a finite index subgroup of Γ, then $\tilde{\Gamma}^{*}=\Gamma^{*} \cap \tilde{\Gamma}$ is a finite index subgroup of Γ^{*} and of $\tilde{\Gamma}$. Hence $\operatorname{rank}\left(\Gamma^{*}\right) \geqslant r\left(\tilde{\Gamma}^{*}\right) \geqslant r(\tilde{\Gamma})$ and therefore $\operatorname{rank}\left(\Gamma^{*}\right)=\operatorname{rank}(\Gamma)$.
(2.3) $r\left(\Gamma_{1} \times \Gamma_{2}\right) \leqslant r\left(\Gamma_{1}\right)+r\left(\Gamma_{2}\right)$.

This follows from the fact that

$$
A_{i}\left(\Gamma_{1}\right) \times A_{j}\left(\Gamma_{2}\right) \subseteq A_{i+j}\left(\Gamma_{1} \times \Gamma_{2}\right) .
$$

(2.4) Let $\Gamma=\Gamma_{1} \times \Gamma_{2}$ and let $\varphi=\varphi \times \varphi_{2} \in A_{i}(\Gamma)$. Then there exist integers r and s such that $r+s=i, \varphi_{1} \in A_{r}\left(\Gamma_{1}\right)$, and $\varphi_{2} \in A_{s}\left(\Gamma_{2}\right)$.

Proof. By hypothesis $Z_{\Gamma}(\varphi)=Z_{\Gamma_{1}}\left(\varphi_{1}\right) \times Z_{\Gamma_{2}}\left(\varphi_{2}\right)$ contains a free abelian subgroup Δ of rank r^{*} as a subgroup of finite index for some $r^{*} \leqslant i$. For $j=1,2$ choose free abelian subgroups $\Delta_{j} \subseteq Z_{\Gamma_{j}}\left(\varphi_{j}\right)$ of rank r_{j} such that $\Delta_{1} \times \Delta_{2}$ has finite index in Δ and Δ_{j} has finite index in $Z_{\Gamma_{j}}\left(\varphi_{j}\right)$. It follows that $r_{1}+r_{2}=r^{*}$ since $\Delta_{1} \times \Delta_{2}$ has finite index in Δ. Now choose integers $r \geqslant r_{1}$ and $s \geqslant r_{2}$ such that $r+s=i$.

As a consequence of (2.4) and the remark following (2.3) we obtain

$$
\begin{align*}
A_{i}\left(\Gamma_{1} \times \Gamma_{2}\right) & =\bigcup_{r+s=i} A_{r}\left(\Gamma_{1}\right) \times A_{s}\left(\Gamma_{2}\right) \tag{2.5}\\
& \subseteq\left\{A_{i}\left(\Gamma_{1}\right) \times \Gamma_{2}\right\} \cap\left\{\Gamma_{1} \times A_{i}\left(\Gamma_{2}\right)\right\}
\end{align*}
$$

Next we show that

$$
\begin{equation*}
r\left(\Gamma_{1} \times \Gamma_{2}\right) \geqslant r\left(\Gamma_{k}\right) \quad \text { for } k=1,2 . \tag{2.6}
\end{equation*}
$$

To prove this merely note that if $\Gamma_{1} \times \Gamma_{2}=\bigcup_{j}\left(\varphi_{j} \times \psi_{j}\right) \cdot A_{i}\left(\Gamma_{1} \times \Gamma_{2}\right)$ for some finite collection $\left\{\varphi_{j} \times \psi_{j}\right\}$ of elements of $\Gamma_{1} \times \Gamma_{2}$, then $\Gamma_{1}=\bigcup_{j} \varphi_{j}$. $A_{i}\left(\Gamma_{1}\right)$ and $\Gamma_{2}=\bigcup_{j} \psi_{j} \cdot A_{i}\left(\Gamma_{2}\right)$ by (2.5).

$$
\begin{equation*}
r\left(\Gamma_{1} \times \Gamma_{2}\right)=r\left(\Gamma_{1}\right)+r\left(\Gamma_{2}\right) . \tag{2.7}
\end{equation*}
$$

Proof. By (2.3) and (2.6) it suffices to consider the case that the integers $r\left(\Gamma_{1} \times \Gamma_{2}\right), r\left(\Gamma_{1}\right)$, and $r\left(\Gamma_{2}\right)$ are all finite and positive. Let $\Gamma=\Gamma_{1} \times \Gamma_{2}$ and suppose that

$$
r(\Gamma)=i<r\left(\Gamma_{1}\right)+r\left(\Gamma_{2}\right)
$$

Let $j_{1}=r\left(\Gamma_{1}\right)-1 \geqslant 0$ and $j_{2}=r\left(\Gamma_{2}\right)-1 \geqslant 0$. Then
(a) $A_{i}(\Gamma)=\bigcup_{r+s=i} A_{r}\left(\Gamma_{1}\right) \times A_{s}\left(\Gamma_{2}\right) \subseteq\left\{A_{j_{1}}\left(\Gamma_{1}\right) \times \Gamma_{1}\right\} \cup\left\{\Gamma_{1} \times A_{j_{2}}\left(\Gamma_{2}\right)\right\}$.

Choose elements $\varphi_{1} \times \psi_{1}, \cdots, \varphi_{N} \in \psi_{N}$ such that

$$
\begin{equation*}
\left(\varphi_{1} \times \psi_{1}\right) \cdot A_{i}(\Gamma) \cup \cdots \cup\left(\varphi_{N} \times \psi_{N}\right) \cdot A_{i}(\Gamma)=\Gamma . \tag{b}
\end{equation*}
$$

By definition of j_{1} and j_{2} there are elements $\varphi_{0} \in \Gamma_{1}$ and $\psi_{0} \in \Gamma_{2}$ such that

$$
\begin{aligned}
& \varphi_{0} \notin \varphi_{1} \cdot A_{j_{1}}\left(\Gamma_{1}\right) \cup \cdots \cup \varphi_{N} \cdot A_{j_{1}}\left(\Gamma_{1}\right), \\
& \psi_{0} \notin \psi_{1} \cdot A_{j_{2}}\left(\Gamma_{2}\right) \cup \cdots \cup \psi_{N} \cdot A_{j_{2}}\left(\Gamma_{2}\right) .
\end{aligned}
$$

Then

$$
\begin{aligned}
\varphi_{0} \times \psi_{0} & \not\left(\varphi_{1} \times \psi_{1}\right) \cdot\left(A_{j_{1}}\left(\Gamma_{1}\right) \times \Gamma_{2}\right) \cup \cdots \cup\left(\varphi_{N} \times \psi_{N}\right) \cdot\left(A_{j_{1}}\left(\Gamma_{1}\right) \times \Gamma_{2}\right) \\
& \cup\left(\varphi_{1} \times \psi_{1}\right) \cdot\left(\Gamma_{1} \times A_{j_{2}}\left(\Gamma_{2}\right)\right) \cup \cdots \cup\left(\varphi_{N} \times \psi_{N}\right) \cdot\left(\Gamma_{1} \times A_{j_{2}}\left(\Gamma_{2}\right)\right) .
\end{aligned}
$$

This contradicts (a) and (b).
Proof of Proposition 2.1. Assertion (1) is contained in (2.2), and the first part of assertion (2) is contained in (2.7). If Γ_{i}^{*} has finite index in Γ_{i} for $1 \leqslant i \leqslant k$, then $\Gamma_{1}^{*} \times \Gamma_{2}^{*} \times \cdots \times \Gamma_{k}^{*}$ has finite index in $\Gamma_{1} \times \Gamma_{2} \times \cdots \times \Gamma_{k}$. Hence

$$
\operatorname{rank}\left(\Gamma_{1} \times \Gamma_{2} \times \cdots \times \Gamma_{k}\right) \geqslant \sum_{i=1}^{k} r\left(\Gamma_{i}^{*}\right)
$$

by (2.7), which proves that

$$
\operatorname{rank}\left(\Gamma_{1} \times \Gamma_{2} \times \cdots \times \Gamma_{k}\right) \geqslant \sum_{i=1}^{k} \operatorname{rank}\left(\Gamma_{i}\right)
$$

Conversely, if Γ^{*} has finite index in Γ, then Γ^{*} contains a finite index subgroup of the form $\Gamma_{1}^{*} \times \cdots \times \Gamma_{k}^{*}$, where each Γ_{i}^{*} has finite index in Γ_{i}. Hence $r\left(\Gamma^{*}\right) \leqslant \sum_{i=1}^{k} \operatorname{rank}\left(\Gamma_{i}\right)$ by (2.2) and (2.7), which proves that

$$
\operatorname{rank}(\Gamma)=\operatorname{rank}\left(\Gamma_{1} \times \cdots \times \Gamma_{k}\right) \leqslant \sum_{i=1}^{k} \operatorname{rank}\left(\Gamma_{i}\right)
$$

3. The main results

In the first part of this section we consider rank one manifolds. We say that a geodesic γ in M or in H has rank one if $\gamma^{\prime}(t)$ has rank one for some t (and hence for all t). For a subgroup $\Gamma \subseteq I(H)$ define $B_{1}=B_{1}(\Gamma)$ by

$$
B_{1}=\{\varphi \in \Gamma: \varphi \text { translates a rank one geodesic }\} .
$$

If $\varphi \in B_{1}$ translates a rank one geodesic γ, then γ is the unique geodesic translated by φ and hence is left invariant by $Z_{\Gamma}(\varphi)$. In particular, if Γ is discrete, then $Z_{\Gamma}(\varphi)$ contains an infinite cyclic subgroup of finite index, which proves that $B_{1}(\Gamma) \subseteq A_{1}(\Gamma)$.
(3.1) Theorem. Let $\Gamma \subseteq I(H)$ be a discrete subgroup that satisfies the duality condition. If the (geometric) rank of H is one, then $r(\Gamma)=1$.

Remark. The proof actually shows that if Γ is any subgroup of $I(H)$ (possibly not discrete) that satisfies the duality condition, then there exist four elements $\varphi_{1}, \varphi_{2}, \psi_{1}$, and ψ_{2} in Γ such that

$$
\Gamma=\varphi_{1} B_{1} \cup \varphi_{2} B_{1} \cup \psi_{1} B_{1} \cup \psi_{2} B_{1} .
$$

The proof of the theorem will require some preliminary results. The following definition will be useful.
(3.2) Definition. A point $x \in H(\infty)$ is called a hyperbolic point if for any $y \neq x, y \in H(\infty)$, there is a rank one geodesic γ joining x and y (that is, $\gamma(\infty)=x$ and $\gamma(-\infty)=y$ or vice versa).
(3.3) Remark. If a rank one geodesic γ is translated by an isometry $\varphi \in I(H)$, then $\gamma(\infty)$ and $\gamma(-\infty)$ are hyperbolic points. This follows from a trivial modification of the proof of part (iii) of Theorem 2.2 in [2], where a slightly different result is proved. If H has rank one and $I(H)$ satisfies the duality condition, then the hyperbolic points of $H(\infty)$ that arise in this fashion are dense in $H(\infty)$. To see this one can either apply Theorem 2.13 of [2] and the fact that the rank one vectors are dense in $S H$ or Theorem 2.13 of [2] and Lemma 2.3b of [9].
(3.4) Lemma. Let γ be a rank one geodesic of H and choose $\varepsilon_{0}>0$ so that if $d^{*}\left(v, \gamma^{\prime}(0)\right)<\varepsilon_{0}$, then γ_{v} is of rank one. Then for each ε with $0<\varepsilon<\varepsilon_{0}$ there exist neighborhoods $V \subseteq \bar{H}=H \cup H(\infty)$ of $x=\gamma(\infty)$ and $U \subseteq \bar{H}$ of $y=$ $\gamma(-\infty)$ such that for any points $x^{*} \in V$ and $y^{*} \in U$ there is a unique rank one geodesic γ^{*} in H joining x^{*} to y^{*} such that $d^{*}\left(\gamma^{* \prime}(0), \gamma^{\prime}(0)\right) \leqslant \varepsilon$ for a suitable parametrization of γ^{*}.

Proof. We need to show only the existence of γ^{*}. Rank one follows from the choice of ε_{0} and uniqueness of γ^{*} follows from rank one.

Let $\left\{x_{n}^{*}\right\},\left\{y_{n}^{*}\right\}$ be arbitrary sequences in H such that $x_{n}^{*} \rightarrow x$ and $y_{n}^{*} \rightarrow y$ as $n \rightarrow+\infty$. Let γ_{n}^{*} be the geodesic from x_{n}^{*} to y_{n}^{*}, parametrized so that $d\left(p, \gamma_{n}^{*}\right)=d\left(p, \gamma_{n}^{*}(0)\right)$, where $p=\gamma(0)$. Since γ has rank one it follows from assertion (*) in the proof of Lemma 2.1 in [2] that $d\left(p, \gamma_{n}^{*}\right) \rightarrow 0$, and hence $\gamma_{n}^{* \prime}(0) \rightarrow \gamma^{\prime}(0)$ as $n \rightarrow+\infty$. By properties of the cone topology of \bar{H} ($\S 2$ of [15]) the proof is complete.
(3.5) Lemma. Let $p \in H$ be fixed and let $x \in H(\infty)$ be a hyperbolic point. For any neighborhood O^{*} of x in \bar{H} there exists a neighborhood O of x in \bar{H} and a number $R>0$ such that if σ is a geodesic in H with endpoints in O and $\bar{H}-O^{*}$, then $d(p, \sigma) \leqslant R$.

Proof. The set $\bar{H}-O^{*}$ is compact in \bar{H}, and there exists a geodesic from x to q for every $q \in \bar{H}-\{x\}$ since x is a hyperbolic point. Given a point $q \in \bar{H}-O^{*}$ we can find neighborhoods $O_{q} \subseteq \bar{H}$ of q and $V_{q} \subseteq \bar{H}$ of x and a number $R_{q}>0$ such that if $x^{*} \in V_{q}$ and $q^{\prime} \in O_{q}$, then there exists a geodesic σ from q^{\prime} to x^{*} with $d(p, \sigma) \leqslant R_{q}$. This is obvious if $q \in H$ and follows from Lemma 3.4 if $q \in H(\infty)$. Now select points $q_{1}, \cdots, q_{N} \in \bar{H}-O^{*}$ such that $\bar{H}-O^{*} \subseteq \bigcup_{i=1}^{N} O_{q_{i}}$. If $O=\bigcap_{i=1}^{N} V_{q_{i}}$ and $R=\max \left\{R_{q_{i}}: 1 \leqslant i \leqslant N\right\}$, then O and R have the desired properties.
(3.6) Lemma. Let $x \in H(\infty)$ be a hyperbolic point, and let $O^{*} \subseteq H(\infty)$ be a neighborhood of x. Then we can find a neighborhood $O \subseteq H(\infty)$ of x such that if γ is a geodesic of H with endpoints in O and $H(\infty)-O^{*}$, then γ is of rank one. Moreover each $y^{*} \in H(\infty)-O^{*}$ and $x^{*} \in O$ determine a rank one geodesic $\gamma_{x^{*} y^{*}}$.

Proof. For each point $y \in H(\infty)-\{x\}$ there is a unique geodesic joining x to y and this geodesic is of rank one. For each $y \in H(\infty)-O^{*}$ there exist neighborhoods $O_{y} \subseteq H(\infty)$ of y and $V_{y} \subseteq H(\infty)$ of x such that if $y^{*} \in O_{y}$ and $x^{*} \in V_{y}$, then there is a unique geodesic joining x^{*} to y^{*} and this geodesic is of rank one (Lemma 3.4). By the compactness of $H(\infty)-O^{*}$ there exist points y_{1}, \cdots, y_{N} in $H(\infty)-O^{*}$ such that $H(\infty)-O^{*} \subseteq \cup_{i=1}^{N} O_{y_{i}}$. Set $O=\bigcap_{i=1}^{N} V_{y_{i}}$.
(3.7) Lemma. Let $x \in H(\infty)$ be a hyperbolic point, and let $O \subseteq \bar{H}$ be a neighborhood of x. Then

$$
\star_{p_{n}}(\bar{H}-O)=\sup \left\{\star_{p_{n}}(a, b): a, b \in \bar{H}-O\right\} \rightarrow 0 \quad \text { as } n \rightarrow+\infty
$$

for any sequence $\left\{p_{n}\right\} \subseteq H$ that converges to x.
Proof. Let $\left\{p_{n}\right\} \subseteq H$ converge to x and let $\left\{x_{n}\right\} \subseteq \bar{H}-O$ be an arbitrary sequence. It suffices to prove that $\varangle_{p_{n}}\left(p, x_{n}\right) \rightarrow 0$ as $n \rightarrow+\infty$, where $p \in H$ is a fixed point. This is clear if $\left\{x_{n}\right\} \subseteq H$ is bounded by the law of cosines (see for example [15, pp. 47-48]). We may assume that $x_{n} \rightarrow x^{*} \in \bar{H}-O$ by passing to a subsequence. Let σ, σ_{n} be the unique geodesics from x to x^{*} and
from p_{n} to x_{n} respectively. By Lemma 3.4. $\sigma_{n}^{\prime}(0) \rightarrow \sigma^{\prime}(0)$ as $n \rightarrow+\infty$ for suitable parametrizations of σ_{n}. Hence $d\left(p, \sigma_{n}(0)\right)$ is bounded and $\Varangle_{p_{n}}\left(p, x_{n}\right)$ $=\Varangle_{p_{n}}\left(p, \sigma_{n}(0)\right) \rightarrow 0$ as $n \rightarrow \infty$ be the law of cosines.
(3.8) Corollary. Let x, y be distinct points in $H(\infty)$, and let x be hyperbolic. Suppose that x, y are dual relative to some subgroup $\Gamma \subseteq I(H)$. Then for any neighborhoods $O_{x} \subseteq \bar{H}$ of x and $O_{y} \subseteq \bar{H}$ of y there exists an isometry $\varphi \in \Gamma$ such that

$$
\varphi\left(\bar{H}-O_{x}\right) \subseteq O_{y} \quad \text { and } \quad \varphi^{-1}\left(\bar{H}-O_{y}\right) \subseteq O_{x} .
$$

Proof. By hypothesis we can choose a sequence $\left\{\varphi_{n}\right\} \subseteq \Gamma$ so that $\varphi_{n} p \rightarrow y$ and $\varphi_{n}^{-1} p \rightarrow x$ as $n \rightarrow \infty$, where $p \in H$ is fixed. By Lemma 3.7

$$
\star_{p}\left(\varphi_{n}\left(\bar{H}-O_{x}\right)\right)=\star_{\varphi_{n}^{-1} p}\left(\bar{H}-O_{x}\right) \rightarrow 0 \quad \text { as } n \rightarrow+\infty .
$$

Since $\varphi_{n} p \rightarrow y$ and $d\left(p, \varphi_{n}\left(\bar{H}-O_{x}\right)\right)=d\left(\varphi_{n}^{-1} p, \bar{H}-O_{x}\right) \rightarrow \infty$ as $n \rightarrow \infty$ we may choose $\varphi=\varphi_{n}$ for any n sufficiently large.
(3.9) Lemma. Let $x \in H(\infty)$ be a hyperbolic point, and let $O^{*} \subseteq \bar{H}$ be a neighborhood of x. There exists a neighborhood $O \subseteq \bar{H}$ of x such that if $\left\{q_{n}\right\} \subseteq H-O^{*}$ is any divergent sequence, then $\Varangle_{q_{n}}(O) \rightarrow 0$ as $n \rightarrow \infty$.

Proof. Fix a point $p \in H$. By Lemma 3.5 there exists a number $R>0$ and neighborhood $O \subseteq \bar{H}$ of x such that if σ is a geodesic in H with endpoints in O and $\bar{H}-O^{*}$, then $d(p, \sigma) \leqslant R$. It suffices to prove that $\Varangle_{q_{n}}\left(p, x_{n}\right) \rightarrow 0$ for any sequence $\left\{x_{n}\right\} \subseteq 0$ and any divergent sequence $\left\{q_{n}\right\} \subseteq H-O^{*}$. If σ_{n} denotes the geodesic from q_{n} to x_{n}, then we may choose q_{n}^{*} on σ_{n} so that $d\left(p, q_{n}^{*}\right) \leqslant R$ for every n. Then $\Varangle_{q_{n}}\left(p, x_{n}\right)=\Varangle_{q_{n}}\left(p, q_{n}^{*}\right) \rightarrow 0$ as $n \rightarrow \infty$ by the law of cosines.
(3.10) Lemma. Let H have rank one, and let A, B be open sets in $H(\infty)$ such that $\varangle_{p}(a, b) \geqslant \delta>0$ for all $a \in A, b \in B$, some point $p \in H$ and some $\delta>0$. Let x_{1}, x_{2} be distinct hyperbolic points in $H(\infty)$. Then we can find disjoint neighborhoods V_{1}, V_{2} in $H(\infty)$ of x_{1}, x_{2} such that for each $\varphi \in I(H)$ at least one of the following holds:
(1) $\varphi\left(V_{1}\right) \cap A=\varnothing$.
(2) $\varphi\left(V_{1}\right) \cap B=\varnothing$.
(3) $\varphi\left(V_{2}\right) \cap A=\varnothing$.
(4) $\varphi\left(V_{2}\right) \cap B=\varnothing$.

Proof. Fix disjoint neighborhoods W_{1}, W_{2} of x_{1}, x_{2} in \bar{H}. Choose neighborhoods O_{1}, O_{2} of x_{1}, x_{2} in \bar{H} with $\bar{O}_{i} \subseteq W_{i}$ for $i=1,2$. By Lemma 3.9 we can choose neighborhoods U_{1}, U_{2} of x_{1}, x_{2} in $H(\infty)$ such that $U_{i} \subseteq O_{i}$ and $\Varangle_{p_{n}}\left(p, U_{i}\right) \rightarrow 0$ as $n \rightarrow \infty$ for any divergent sequence $\left\{p_{n}\right\} \subseteq H-O_{i}$ for $i=1,2$. Suppose now that the assertion is false. Then for $i=1,2$ we can find
nested neighborhood bases $\left\{V_{n}^{i}\right\}$ at x_{i} in $H(\infty)$ such that $V_{n}^{i} \subseteq U_{i}$ for all n, and a sequence $\left\{\varphi_{n}\right\} \subseteq I(H)$ such that $\varphi_{n}\left(V_{n}^{i}\right) \cap A \neq \varnothing$ and $\varphi_{n}\left(V_{n}^{i}\right) \cap B \neq \varnothing$ for all n.

We show first that $\varphi_{n}^{-1}(p)$ has a cluster point in $H(\infty)$. If this were not the case, then $\left\{\varphi_{n}\right\}$ would converge to some element $\varphi \in I(H)$, passing to a subsequence if necessary [21, p. 167]. The sets $\varphi_{n}\left(V_{n}^{i}\right)$ would then ultimately lie in any given neighborhood in $H(\infty)$ of $\varphi\left(x_{i}\right)$ since $\left\{V_{n}^{i}\right\}$ is a neighborhood basis at x_{i}. In particular $\varphi_{n}\left(V_{n}^{i}\right)$ could not intersect the δ-separated sets A, B for large n, which contradicts the choice of φ_{n}.

Now let $z \in H(\infty)$ be a cluster point of $\left\{\varphi_{n}^{-1}(p)\right\}$. Either $z \in H(\infty)-W_{1}$ or $z \in H(\infty)-W_{2}$ since W_{1}, W_{2} are disjoint. Assume for simplicity that $z \in H(\infty)-W_{1}$ and choose a subsequence $\left\{\varphi_{n_{k}}\right\}$ so that $\varphi_{n_{k}}^{-1}(p) \rightarrow z$ as $k \rightarrow+\infty$. Assume further that $\varphi_{n_{k}}(p)$ converges to a point $z^{*} \in H(\infty)$. Then $\left\{\varphi_{n_{k}}^{-1}(p)\right\} \subseteq H-O_{1}$ for large k by the definition of O_{1} and hence $\star_{p}\left(\varphi_{n_{k}}(p), \varphi_{n_{k}}\left(U_{1}\right)\right)=\star_{\varphi_{n_{k}}^{-1}(p)}\left(p, U_{1}\right) \rightarrow 0$ as $k \rightarrow+\infty$ by the choice of U_{1}. Hence the sets $\varphi_{n_{k}}\left(U_{1}\right)$ converge to z^{*}, contradicting the fact that $\varphi_{n_{k}}\left(U_{1}\right)$ contains $\varphi_{n_{k}}\left(V_{n_{k}}^{1}\right)$ and hence meets both A and B for all k.

Proof of Theorem 3.1. Let x, y, z, w be distinct points in $H(\infty)$ such that z, w are hyperbolic. Given $p \in H$ fix $\delta>0$ and open neighborhoods A, B, C, D of x, y, z, w in $H(\infty)$ such that $\Varangle_{p}\left(q_{1}, q_{2}\right) \geqslant \delta>0$ for any points q_{1}, q_{2} taken from two different sets of the four possibilities. We assume furthermore that C, D satisfy the conclusions of Lemma 3.10 relative to A and B. Now choose neighborhoods V_{1}, V_{2} in $H(\infty)$ of z, w so that $\bar{V}_{1} \subseteq C, \bar{V}_{2} \subseteq D$ and for any points z_{1}, z_{2} in $V_{1}, H(\infty)-C$ (respectively in $V_{2}, H(\infty)-D$) there exists a unique rank one geodesic of H with endpoints z_{1}, z_{2}. This can be done by Lemma 3.6. Since Γ satisfies the duality condition and H has rank one, any two points of $H(\infty)$ are dual relative to Γ; the proof is implicit in [2] and follows explicitly from Lemma 2.3b of [9] and the discussion of (1.5).

Choose elements $\varphi_{1}, \psi_{1}, \varphi_{2}, \psi_{2}$ in Γ such that
(a) $\varphi_{1}(H(\infty)-A) \subseteq V_{1}$ and $\varphi_{1}^{-1}\left(H(\infty)-V_{1}\right) \subseteq A$,
(b) $\psi_{1}(H(\infty)-A) \subseteq V_{2}$ and $\psi_{1}^{-1}\left(H(\infty)-V_{2}\right) \subseteq A$,
(c) $\varphi_{2}(H(\infty)-B) \subseteq V_{1}$ and $\varphi_{2}^{-1}\left(H(\infty)-V_{1}\right) \subseteq B$,
(d) $\psi_{2}(H(\infty)-B) \subseteq V_{2}$ and $\psi_{2}^{-1}\left(H(\infty)-V_{2}\right) \subseteq B$.

This can be done by Corollary 3.8. Now let $\xi \in \Gamma$ be given arbitrarily. One of the four possibilities of Lemma 3.10 must occur for ξ relative to A, B, C, D by the definition of these sets. For simplicity we consider first the case that $\xi(C) \cap A=\varnothing$. Then

$$
\begin{equation*}
\left(\varphi_{1} \xi\right)(C) \subseteq V_{1} \subseteq \bar{V}_{1} \subseteq C \tag{*}
\end{equation*}
$$

and hence $\varphi_{1} \xi$ has a fixed point z_{1} in V_{1}. (We may assume that all neighborhoods considered are homeomorphic to open disks in \mathbb{R}^{n-1}.) Observe that

$$
\begin{aligned}
\left(\varphi_{1} \xi\right)^{-1}(H(\infty)-C) & =\left(\xi^{-1} \varphi_{1}^{-1}\right)(H(\infty)-C) \\
& \subseteq\left(\xi^{-1} \varphi_{1}^{-1}\right)\left(H(\infty)-V_{1}\right) \subseteq \xi^{-1}(A) \subseteq H(\infty)-C
\end{aligned}
$$

and hence $\varphi_{1} \xi$ has a fixed point z_{2} in $H(\infty)-C$. Therefore $\varphi_{1} \xi$ leaves invariant the unique rank one geodesic γ^{*} joining z_{1} to z_{2}. Moreover, $\varphi_{1} \xi$ fixes no point p of γ^{*}; if $\varphi_{1} \xi$ did fix a point p of γ^{*}, then by identifying C, V_{1}, \bar{V}_{1} with subsets of the unit sphere in $T_{p} H$ the inclusion relations of (*) would imply that the differential map of $\varphi_{1} \xi$ at p strictly compresses the set C, which is impossible for an element of $O(n), n=\operatorname{dim} H$. Therefore $\varphi_{1} \xi$ translates γ^{*} and $\varphi_{1} \xi \in B_{1} \subseteq A_{1}$.

We have shown that if $\xi(C) \cap A=\varnothing$ for an element $\xi \in \Gamma$, then $\varphi_{1} \xi \in B_{1}$ $\subseteq A_{1}$. The other three possibilities from Lemma 3.10 are that $\xi(C) \cap B=\varnothing$, $\xi(D) \cap A=\varnothing$, or $\xi(D) \cap B=\varnothing$. Arguing as above we show respectively that $\varphi_{2} \xi, \psi_{1} \xi$, or $\psi_{2} \xi$ are elements of B_{1}. It follows that

$$
\Gamma=\varphi_{1}^{-1} A_{1} \cup \varphi_{2}^{-1} A_{1} \cup \psi_{1}^{-1} A_{1} \cup \psi_{2}^{-1} A_{1}
$$

which implies that $r(\Gamma) \leqslant 1$. (If Γ has no elements of finite order, then $r(\Gamma)=1$ since then A_{0} is empty.)

We complete the proof by showing that $r(\Gamma)=1$. Suppose that this is false and write
(+)

$$
\Gamma=\xi_{1} A_{0} \cup \xi_{2} A_{0} \cup \cdots \cup \xi_{k} A_{0}
$$

for suitable elements $\xi_{1}, \cdots, \xi_{k} \in \Gamma$. Note that A_{0} contains only elements of finite order and each of these elements must be elliptic (have a fixed point in H). (However, not all elliptic elements of Γ may belong to A_{0}.) Now choose distinct points x, y, z, w in $H(\infty)$ with z, w hyperbolic and choose neighborhoods A, B, C, D in $H(\infty)$ of these points as above so that $\xi_{i}(C) \cap A=\varnothing$ for all $i, 1 \leqslant i \leqslant k$. This is possible since there are only finitely many of the ξ_{i} and since hyperbolic points are dense in $H(\infty)$. Choose an element $\varphi_{1} \in \Gamma$ satisfying (a) above. The arguments above show that $\varphi_{1} \xi_{i}$ translates a geodesic for each $i, 1 \leqslant i \leqslant k$, and in particular $\varphi_{1} \xi_{i}$ is not elliptic. On the other hand, by $(+)$ there is an i such that $\varphi_{1}^{-1} \in \xi_{i} A_{0}$. This implies that $\xi_{i}^{-1} \varphi_{1}^{-1}=\left(\varphi_{1} \xi_{i}\right)^{-1}$ $\in A_{0}$ and hence both $\varphi_{1} \xi_{i}$ and its inverse are elliptic, a contradiction. Therefore $r(\Gamma)=1$.

The discussion above completes the treatment of the rank one case of Theorem B as stated in the introduction. We now complete the proof of that result and actually generalize it slightly.
(3.11) Theorem. Let H be a complete simply connected Riemannian manifold with sectional curvature satisfying $-a^{2} \leqslant K \leqslant 0$ for some positive constant a. If Γ is a discrete group of isometries of H such that $\operatorname{vol}(H / \Gamma)<\infty$, then $\operatorname{rank}(\Gamma)=\operatorname{rank}(H)$.

Proof. If H is a symmetric space of noncompact type, then a finite index subgroup Γ^{*} of Γ is contained in $I_{0}(H)$, and we conclude from the result of Prasad and Raghunathan [27, Theorem 3.9] that

$$
\operatorname{rank}(\Gamma)=\operatorname{rank}\left(\Gamma^{*}\right)=r\left(\Gamma^{*}\right)=\operatorname{rank}(H)
$$

Next suppose that H admits no Euclidean de Rham factor and is not a symmetric space of noncompact type. By Theorem 1.8 we may write H as a Riemannian product $H_{S} \times H_{1} \times \cdots \times H_{k}$, where H_{S} is a symmetric space of noncompact type and each H_{i} for $1 \leqslant i \leqslant k$ is a rank one manifold whose isometry group is discrete and satisfies the duality condition. Of course, the factor H_{S} may be absent. By Theorem 1.7 there exists a finite index subgroup Γ^{*} of Γ such that Γ^{*} is a direct product $\Gamma_{S} \times \Gamma_{1} \times \cdots \times \Gamma_{k}$, where Γ_{S}, $\Gamma_{1}, \cdots, \Gamma_{k}$ are discrete subgroups of $I\left(H_{S}\right), I\left(H_{1}\right), \cdots, I\left(H_{k}\right)$ which satisfy the duality condition. It follows that $\operatorname{vol}\left(H_{S} / \Gamma_{S}\right)<\infty$ and $\operatorname{vol}\left(H_{i} /\left(\Gamma_{i}\right)<\infty\right.$ for $1 \leqslant i \leqslant k$ since $\operatorname{vol}\left(H / \Gamma^{*}\right)<\infty$. By Proposition 2.1, Theorem 3.1, and the symmetric space case just considered we conclude that

$$
\begin{aligned}
\operatorname{rank}(\Gamma) & =\operatorname{rank}\left(\Gamma^{*}\right)=\operatorname{rank}\left(\Gamma_{S}\right)+\sum_{i=1}^{k} \operatorname{rank}\left(\Gamma_{i}\right) \\
& =\operatorname{rank}\left(H_{S}\right)+k=\operatorname{rank}(H)
\end{aligned}
$$

Suppose now that H has a nontrivial Euclidean de Rham factor of dimension $k \geqslant 1$ and write $H=E^{k} \times H_{1}$ where E^{k} denotes k-dimensional Euclidean space and H_{1} denotes the product of all non-Euclidean de Rham factors of H. By Lemma 3 of [11] we may choose a finite index subgroup Γ_{0} of Γ such that if Γ^{*} is any finite index subgroup of Γ_{0}, then $Z\left(\Gamma^{*}\right)$, the center of Γ^{*}, equals $C\left(\Gamma^{*}\right)$, the Clifford subgroup of Γ^{*} consisting of all elements of the form $T \times\{1\}$ in $I(H)=I\left(E^{k}\right) \times I\left(H_{1}\right)$, where T is a translation of E^{k}. Moreover, it follows from the main theorem of [13] that $Z\left(\Gamma^{*}\right)$ is a free abelian group of rank k and hence that $E^{k} / Z\left(\Gamma^{*}\right)$ is a flat k-torus. We remark that the results just quoted from [11], [13] are actually stated there under slightly stronger hypotheses on Γ. However, the results remain true under our hypotheses on Γ, and the proofs require no modification.
Now let Γ^{*} be any finite index subgroup of Γ_{0}, and let $p: \Gamma^{*} \rightarrow I\left(E^{k}\right)$ and $p_{1}: \Gamma^{*} \rightarrow I\left(H_{1}\right)$ denote the projection homomorphisms. The group $p\left(\Gamma^{*}\right)$ consists of translations of E^{k} since $Z\left(\Gamma^{*}\right)$ is a lattice of translations in E^{k}.

The group $\Gamma_{1}=p_{1}\left(\Gamma^{*}\right)$ is a discrete subgroup of $I\left(H_{1}\right)$ by Lemma A in $\S 2$ of [13]. The projection of H onto H_{1} induces a projection P of the quotient spaces H / Γ^{*} onto H_{1} / Γ_{1}, where both spaces are smooth Riemannian manifolds except on a subset of measure zero. The fibers of P are isometric, totally geodesic smooth immersions of the flat k-torus $E^{k} / Z\left(\Gamma^{*}\right)$ since $Z\left(\Gamma^{*}\right)=$ $C\left(\Gamma^{*}\right)$ is the kernel of p_{1}. Hence $\operatorname{vol}\left(H_{1} / \Gamma_{1}\right)<\infty$ since $\operatorname{vol}\left(H / \Gamma^{*}\right)<\infty$ and by the first part of the proof we get

$$
\operatorname{rank}\left(\Gamma_{1}\right)=\operatorname{rank}\left(H_{1}\right)=\operatorname{rank}(H)-k .
$$

Now consider an element $\varphi=\varphi_{e} \times \varphi_{1}$ in Γ^{*}, where $\varphi_{e} \in p\left(\Gamma^{*}\right)$ and $\varphi_{1} \in \Gamma_{1}=p_{1}\left(\Gamma^{*}\right)$. Since $p\left(\Gamma^{*}\right)$ is a group of translations of E^{k} we see that $p_{1}^{-1}\left(Z_{\Gamma_{1}}\left(\varphi_{1}\right)\right)=Z_{\Gamma^{*}}(\varphi)$ and $p_{1}: Z_{\Gamma^{*}}(\varphi) \rightarrow Z_{\Gamma_{1}}\left(\varphi_{1}\right)$ is a surjective homomorphism with kernel $Z\left(\Gamma^{*}\right)$. Moreover, $p_{1}^{-1}(\Delta) \subseteq \Gamma^{*}$ is an abelian subgroup if and only if $\Delta \subseteq \Gamma_{1}$ is an abelian subgroup. It follows that $p_{1}\left(A_{i}\left(\Gamma^{*}\right)\right)=$ $A_{i-k}\left(\Gamma_{1}\right)$ and $A_{i}\left(\Gamma^{*}\right)=p_{1}^{-1}\left(A_{i-k}\left(\Gamma_{1}\right)\right)$, which implies that $A_{i}\left(\Gamma^{*}\right)$ is invariant under multiplication by elements of kernel $\left(p_{1}\right)=Z\left(\Gamma^{*}\right)$. Therefore

$$
\Gamma^{*}=\bigcup_{\alpha=1}^{N} \varphi_{\alpha} A_{i}\left(\Gamma^{*}\right) \quad \text { for a finite subset }\left\{\varphi_{\alpha}\right\} \subseteq \Gamma^{*}
$$

if and only if

$$
\Gamma_{1}=p_{1}\left(\Gamma^{*}\right)=\bigcup_{\alpha=1}^{N} p_{1}\left(\varphi_{\alpha}\right) A_{i-k}\left(\Gamma_{1}\right) .
$$

We conclude that $\operatorname{rank}(\Gamma)=\operatorname{rank}\left(\Gamma^{*}\right)=\operatorname{rank}\left(\Gamma_{1}\right)+k=\operatorname{rank}(H)$.
We conclude this section with the proof of Theorem C as stated in the Introduction. Suppose that M is an irreducible locally symmetric space of noncompact type and rank $k \geqslant 2$. The first condition is well known (see for example Theorem 13.14 of [28]). Conditions (2) and (3) are necessary by the splitting result Theorem 1.6 and the results of Prasad and Raghunathan respectively. Suppose next that M is a space of finite volume and bounded sectional curvature that satisfies the three conditions given. The first two conditions and Theorem 1.9 imply that the universal cover H of M admits no Euclidean de Rham factor. The second condition implies that M is irreducible. Theorems 1.7, 1.8, and the second condition imply that either H is a rank one space or H is a symmetric space of noncompact type. The third condition and Theorem 3.1 imply that $\operatorname{rank}(H)=k \geqslant 2$.

4. Some examples

We first discuss two examples that show that $r(\Gamma)$ may be strictly smaller than $\operatorname{rank}(\Gamma)$, even if H / Γ is locally symmetric.

Example 1. Let Γ be the fundamental group of a flat Klein bottle, acting by isometries on the Euclidean plane E^{2}. (In the simplest case Γ is generated by $\varphi_{1}:(x, y) \rightarrow(x+1,-y)$ and $\varphi_{2}:(x, y) \rightarrow(x, y+1)$.) The set A_{1} consists of all elements of Γ that reverse the orientation of E^{2}. Since the map $\Gamma \rightarrow \mathbf{Z}_{2}$ sending orientation preserving elements to 0 and orientation reversing elements to 1 is a homomorphism and since A_{1} is the preimage of 1 , it follows that $\Gamma=e A_{1} \cup \gamma A_{1}$, where $\gamma \in A_{1}$ is arbitrary. Therefore $r(\Gamma)<2=\operatorname{rank}(\Gamma)=$ $\operatorname{rank}\left(E^{2}\right)$. Similarly it can be shown that a Bieberbach group Γ of rank k, that is, a discrete uniform group Γ of isometries of k-dimensional Euclidean space E^{k}, satisfies

$$
r(\Gamma)<k=\operatorname{rank}(\Gamma)=\operatorname{rank}\left(E^{k}\right)
$$

unless Γ is free abelian of rank k. Note, however, that a Bieberbach group of rank k always has a free abelian group of rank k as a subgroup of finite index.

Example 2. Let H denote the hyperbolic plane with Gaussian curvature -1. If we regard H as the upper half-plane with metric $d s^{2}=$ $\left(1 / y^{2}\right)\left(d x^{2}+d y^{2}\right)$, then $I_{0}(H)$ is the group $\operatorname{PSL}(2, \mathbf{R})=\operatorname{SL}(2, \mathbf{R}) /\{ \pm I\}$ acting by fractional linear transformations. We now construct a lattice subgroup Γ_{0} of $I(H \times H)$ with $r\left(\Gamma_{0}\right)=1$ and $\operatorname{rank}\left(\Gamma_{0}\right)=\operatorname{rank}(H \times H)=2$ such that $H \times H / \Gamma_{0}$ is a smooth, nonorientable, locally symmetric manifold of finite volume, which may be chosen to be either compact or noncompact. This example does not contradict the result of Prasad and Raghunathan mentioned earlier, since $\Gamma_{0} \not \subset I_{0}(H \times H)=\operatorname{PSL}(2, \mathbf{R}) \times \operatorname{PSL}(2, \mathbf{R})$.

Let $\Gamma \subseteq \operatorname{PSL}(2, \mathbf{R})$ be a lattice, either uniform or nonuniform, with no elements of finite order. For any element $\tau \neq 1$ in Γ there exists a normal subgroup Γ^{*} of finite index such that $\tau \in \Gamma-\Gamma^{*}$ (residual finiteness of Γ). Choose Γ, Γ^{*}, and τ so that the image of τ in Γ / Γ^{*} has even order. The isometry group of $\left(H / \Gamma^{*}\right) \times\left(H / \Gamma^{*}\right)$ is finite and isomorphic to $N\left(\Gamma^{*} \times \Gamma^{*}\right) / \Gamma^{*} \times \Gamma^{*}$, where $N\left(\Gamma^{*} \times \Gamma^{*}\right)$ denotes the normalizer in $I(H \times H)$ of $\Gamma^{*} \times \Gamma^{*}$. Let $\mu \in N\left(\Gamma^{*} \times \Gamma^{*}\right)$ be the element given by $\mu(x, y)$ $=(\tau y, x)$, and let Γ_{0} be the finite index subgroup of $N\left(\Gamma^{*} \times \Gamma^{*}\right)$ generated by $\Gamma^{*} \times \Gamma^{*}$ and μ.

We assert that no nonidentity element of Γ_{0} has a fixed point in $H \times H$ and that the coset $\left(\Gamma^{*} \times \Gamma^{*}\right) \cdot \mu$ lies entirely in $A_{1}\left(\Gamma_{0}\right)$. This will show that $H \times H / \Gamma_{0}$ is a smooth manifold with $r\left(\Gamma_{0}\right)=1$ although $\operatorname{rank}\left(\Gamma_{0}\right)=$ $\operatorname{rank}\left(\Gamma^{*} \times \Gamma^{*}\right)=2$.

We show first that no element of Γ_{0} has a fixed point in $H \times H$. Since μ normalizes $\Gamma^{*} \times \Gamma^{*}$, every element of Γ_{0} has the form $\left(\varphi_{1} \times \varphi_{2}\right) \cdot \mu^{r}$, where $\varphi_{1} \times \varphi_{2} \in \Gamma^{*} \times \Gamma^{*}$ and r is an integer. If $\left(\varphi_{1} \times \varphi_{2}\right) \cdot \mu^{2 k}=\left(\varphi_{1} \times \varphi_{2}\right)$. ($\tau^{k} \times \tau^{k}$) fixes a point (x, y), then $\varphi_{1} \tau^{k} x=x$ and $\varphi_{2} \tau^{k} y=y$. Since Γ has no elliptic elements it follows that $\varphi_{1} \tau^{k}=\varphi_{2} \tau^{k}=1$ and hence $\left(\varphi_{1} \times \varphi_{2}\right) \cdot \mu^{2 k}=1$. An element of the form $\left(\varphi_{1} \times \varphi_{2}\right) \cdot \mu^{2 k+1}$ fixes a point (x, y) if and only if $\varphi_{1} \tau^{k+1} y=x$ and $\varphi_{2} \tau^{k} x=y$. In this case $\left(\varphi_{2} \tau^{k} \varphi_{1} \tau^{-k}\right) \tau^{2 k+1}=\varphi_{2} \tau^{k} \varphi_{1} \tau^{k+1}$ fixes y and hence must be the identity since Γ contains no elliptic elements. Therefore $\tau^{2 k+1} \in \Gamma^{*}$ since τ normalizes Γ^{*}, but this contradicts the assumption that the image of τ in Γ / Γ^{*} has even order.

We next consider the centralizer in Γ_{0} of an element in $\left(\Gamma^{*} \times \Gamma^{*}\right) \cdot \mu$. Let $\varphi=\left(\varphi_{1} \times \varphi_{2}\right) \cdot \mu$ be such an element and let $G=Z_{\Gamma_{0}}(\varphi) \cap\left(\Gamma^{*} \times \Gamma^{*}\right)$, a subgroup of finite index in $Z_{\Gamma_{0}}(\varphi)$. To show that $\left(\Gamma^{*} \times \Gamma^{*}\right) \cdot \mu \subseteq A_{1}\left(\Gamma_{0}\right)$ it suffices to show that G is infinite cyclic. An element $\xi_{1} \times \xi_{2} \in \Gamma^{*} \times \Gamma^{*}$ commutes with $\left(\varphi_{1} \times \varphi_{2}\right) \cdot \mu \in\left(\Gamma^{*} \times \Gamma^{*}\right) \cdot \mu$ if and only if
(a) $\xi_{1} \varphi_{1} \tau=\varphi_{1} \tau \xi_{2}$ and
(b) $\xi_{2} \varphi_{2}=\varphi_{2} \xi_{1}$.

These conditions imply that ξ_{1} commutes with $\varphi_{1} \tau \varphi_{2}$, which is a nonidentity element of Γ since $\tau \in \Gamma-\Gamma^{*}$. Note that $Z_{\Gamma}\left(\varphi_{1} \tau \varphi_{2}\right)$ is infinite cyclic since Γ is a discrete subgroup of $\operatorname{PSL}(2, \mathbf{R})$ with no elements of finite order. If $\alpha \in \Gamma$ is a generator for $Z_{\Gamma}\left(\varphi_{1} \tau \varphi_{2}\right)$, then $\xi_{1}=\alpha^{m}$ for some integer m and $\xi_{2}=\varphi_{2} \xi_{1} \varphi_{2}^{-1}$ $=\left(\varphi_{2} \alpha \varphi_{2}^{-1}\right)^{m}$ by (b) above. Therefore G is a subgroup of the infinite cyclic group with generator $\alpha \times\left(\varphi_{2} \alpha \varphi_{2}^{-1}\right)$.

Remark. If the image of τ in Γ / Γ^{*} has odd order, then the group Γ_{0} constructed above always has elliptic elements.

Example 3. This is an example where Γ satisfies (2) in Theorem C of the Introduction and $\operatorname{rank}(\Gamma)=2$, but where M is not locally symmetric, showing that condition (1) cannot be deleted. This example also shows that the hypothesis in Theorem 1.9 that Γ be finitely generated cannot be deleted. Our construction is similar to one given by Gromov [17].

For all $m \geqslant 2$, let F_{m} be a surface of nonpositive curvature bounded from below by some constant $-a^{2}$ and finite volume $\leqslant m \cdot C$ such that
(i) a neighborhood of the boundary of F_{m} is isometric to a disjoint union of m copies of $\left[0, \varepsilon_{m}\right) \times S_{r_{m-1}}^{1}$ and m copies of $\left[0, \varepsilon_{m}\right) \times S_{r_{m+1}}^{1}$, where $r_{m}=2^{-m}$ and S_{r}^{1} denotes a circle of radius r.
(ii) \mathbf{Z}_{m} operates isometrically on F_{m} with a fixed point p_{m} (there may be others as well) such that F_{m} / \mathbf{Z}_{m} has two boundary components, a neighborhood of one component being isometric to $\left[0, \varepsilon_{m}\right) \times S_{r_{m-1}}^{1}$ and a neighborhood of the other one being isometric to $\left[0, \varepsilon_{m}\right) \times S_{r_{m+1}}^{1}$.

For $m \geqslant 2$ let

$$
V_{m}=\left(F_{m} \times S_{1}^{1} \times S_{r_{m}}^{1}\right) / \mathbf{Z}_{m},
$$

where \mathbf{Z}_{m} acts by $\gamma(p, t, s)=(\gamma(p), \gamma(t), s)$ and $\gamma(t)$ denotes the canonical action of Z_{m} on S_{1}^{1}. Note that $V_{m}, m \geqslant 2$, has two boundary components, a neighborhood of one component isometric to

$$
\left[0, \varepsilon_{m}\right) \times S_{r_{m-1}}^{1} \times S_{1}^{1} \times S_{r_{m}}^{1}
$$

and a neighborhood of the other component isometric to

$$
\left[0, \varepsilon_{m}\right) \times S_{r_{m+1}}^{1} \times S_{1}^{1} \times S_{r_{m}}^{1} .
$$

Hence V_{m} and V_{m+1} can be glued together along the appropriate boundary components by the canonical isometry of

$$
S_{r_{m+1}}^{1} \times S_{1}^{1} \times S_{r_{m}}^{1} \quad \text { with } S_{r_{m}}^{1} \times S_{1}^{1} \times S_{r_{m+1}}^{1} .
$$

This glueing procedure, performed for all $m \geqslant 2$, yields a manifold V_{0} with one boundary component, a neighborhood of which is isometric to

$$
\left[0, \varepsilon_{2}\right) \times S_{r_{1}}^{1} \times S_{1}^{1} \times S_{r_{2}}^{1}
$$

Take an isometric copy V_{1} of V_{0} and glue V_{0} and V_{1} along their boundaries. As a result we obtain a complete Riemannian manifold M without boundary and of nonpositive curvature bounded from below by $-a^{2}$. Note that the volume of M is finite since

$$
\operatorname{vol}\left(V_{m}\right) \leqslant C \cdot 4 \pi^{2} \cdot 2^{-m}
$$

The rank of Γ, the fundamental group of M, is two. H contains a Euclidean factor of dimension one, coming from the S_{1}^{1} 's.

We conclude the discussion of the example by showing that Γ has no finite index subgroup Γ^{*} that is a nontrivial direct product $\Gamma_{1} \times \Gamma_{2}$, and in particular this shows that no finite cover of $M=H / \Gamma$ can be diffeomorphic to $S^{1} \times M^{\prime}$, where M^{\prime} has dimension 3 . We argue by contradiction and assume that Γ does admit such a finite index subgroup $\Gamma^{*}=\Gamma_{1} \times \Gamma_{2}$. The group Γ^{*} satisfies the duality condition by (1.5), and it follows from the corollary to theorem 1 of [29] that H admits a Γ^{*}-invariant splitting

$$
H=H_{0} \times H_{1} \times H_{2}
$$

which satisfies the following conditions: (1) H_{0} is a Euclidean space of dimension $s \geqslant 0$. (2) Every element ϕ of Γ_{1} can be written as $\phi=\left(\phi_{0}, \phi_{1}, 1\right)$ $\in I\left(H_{0}\right) \times I\left(H_{1}\right) \times I\left(H_{2}\right)$ and every element ψ of Γ_{2} can be written as $\psi=\left(\psi_{0}, 1, \psi_{2}\right)$, where ϕ_{0} and ψ_{0} are translations on H_{0}. Of course, any one of the factors H_{0}, H_{1}, H_{2} may be trivial but at least two of the factors must be nontrivial. We consider separately the cases (1) one of the factors H_{1}, H_{2} is
trivial, and (2) the factors H_{1}, H_{2} are both nontrivial. In the discussion below let $p_{i}: \Gamma \rightarrow I\left(H_{i}\right)$ denote the projection homomorphism for $0 \leqslant i \leqslant 2$.

In case (1) we may assume without loss of generality that the factor H_{2} is trivial. Hence $H=H_{0} \times H_{1}$, where H_{0} has dimension 1 and H_{1} has no Euclidean factor. Moreover $\phi=\left(\varphi_{0}, \phi_{1}\right)$ for $\phi \in \Gamma_{1}$ and $\psi=\left(\psi_{0}, 1\right)$ for $\psi \in \Gamma_{2}$, where ϕ_{0} and ψ_{0} are translations on H_{0}. We show first that $\Gamma_{2}=Z^{*}$, the center of Γ^{*}. Clearly $\Gamma_{2} \subset Z^{*}$ since translations on H_{0} commute. To prove the reverse inclusion observe that $p_{1}\left(\Gamma^{*}\right) \subset I\left(H_{1}\right)$ satisfies the duality condition in H_{1} by (1.5) and hence $p_{1}\left(\Gamma^{*}\right)$ has trivial center by Theorem 4.2 of [8] and the fact that H_{1} has no Euclidean de Rham factor. It follows that an element $\phi \in Z^{*}$ has the form $\phi=\left(\phi_{0}, 1\right)$, where ϕ_{0} is a translation on H_{0}. Hence Z^{*} is an infinite cyclic group and the subgroup Γ_{2} is also infinite cyclic with finite index k for some integer $k \geqslant 1$. If $\phi=\left(\phi_{0}, 1\right)$ is an arbitrary element of Z^{*}, then we write $\phi=\psi_{1} \psi_{2}$, where $\psi_{i} \in \Gamma_{i}$ for $i=1,2$. Since $\psi_{1}=\phi \psi_{2}^{-1} \in Z^{*}$ it follows that $\psi_{1}^{k} \in \Gamma_{2} \cap \Gamma_{1}=\{1\}$ and hence $\psi_{1}=1$ since every element of Γ^{*} has infinite order. Therefore $Z^{*} \subset \Gamma_{2}$ and equality follows.

For each positive integer m there exists a point $q_{m} \in M=H / \Gamma$ and a simple, closed geodesic $\gamma_{m} \subset M$ of length $2 \pi / m$ that passes through q_{m} and is tangent to the 1 -dimensional local Euclidean de Rham factor of M. To construct q_{m} and γ_{m} let $q_{m}^{*}=\left(p_{m} \alpha, \beta\right) \in V_{m}^{*}=F_{m} \times S_{1}^{1} \times S_{r_{m}}^{1}$, where α, β are arbitrary and $p_{m} \in F_{m}$ is a point fixed by \mathbf{Z}_{m}. Let $\gamma_{m}^{*} \subset V_{m}^{*}$ be the circle of length 2π through q_{m}^{*} that is tangent to the S_{1}^{1} factor of V_{m}^{*}. Now let q_{m}, γ_{m} be the projections of $q_{m}^{*}, \gamma_{m}^{*}$ into $V_{m}=V_{m}^{*} / \mathbf{Z}_{m}$.

Let $\tilde{\gamma}_{m} \subset H$ be a lift of γ_{m}, and let $\phi_{m} \in \Gamma$ be an element that translates $\tilde{\gamma}_{m}$ by an amount $\pm 2 \pi / m$. Choose an integer N_{m} such that $1 \leqslant N_{m} \leqslant\left[\Gamma: \Gamma^{*}\right]$ and $\phi_{m}^{N_{m}} \in \Gamma^{*}$. It follows from the construction of γ_{m} that $\tilde{\gamma}_{m}(t)=\left(t+t_{m}, r_{m}\right) \in$ $H_{0} \times H_{1}$ for all $t \in \mathbf{R}$, some $t_{m} \in H_{0}=\mathbf{R}$ and some $r_{m} \in H_{1}$. Since $\phi_{m}^{N_{m}}$ translates $\tilde{\gamma}_{m}$ by $\pm 2 \pi N_{m} / m$ it follows from property (2) of the splitting $H=H_{0} \times H_{1} \times H_{2}$ that we may write

$$
\phi_{m}^{N_{m}}=\left(\alpha_{m}, \beta_{m}\right) \in I\left(H_{0}\right) \times I\left(H_{1}\right),
$$

where α_{m} is a translation on H_{0} by $\pm 2 \pi N_{m} / m$ and β_{m} fixes r_{m}. The group $p_{1}(\Gamma) \subset I\left(H_{1}\right)$ is discrete by Lemma A of [13], and hence $\beta_{m}^{k_{m}}=1$ for some positive integer k_{m}. Now write

$$
\phi_{m}^{N_{m}}=\phi_{m}^{*} \phi_{m}^{* *},
$$

where $\phi_{m}^{*} \in \Gamma_{1}$ and $\phi_{m}^{* *} \in \Gamma_{2}$. It follows that $\phi_{m}^{* *}=\left(\alpha_{m}^{* *}, 1\right)$ for some translation $\alpha_{m}^{* *}$ on H_{0} and $\phi_{m}^{*}=\left(\alpha_{m}\left(\alpha_{m}^{* *}\right)^{-1}, \beta_{m}\right)$. In particular $\left(\phi_{m}^{*}\right)^{k_{m}} \in Z^{*}=\Gamma_{2}$ and hence $\phi_{m}^{*}=1$ since $\Gamma_{1} \cap \Gamma_{2}=\{1\}$ and all elements of Γ^{*} have infinite order. Hence $\phi_{m}^{N_{m}}=\left(\alpha_{m}, 1\right) \in Z^{*}=\Gamma_{2}$ for every m. However, if $\phi^{*}=(\alpha, 1)$ is
a generator for Z^{*}, where α is a translation by $a>0$ on H_{0}, then $\phi_{m}^{N_{m}}=\left(\phi^{*}\right)^{j_{m}}$ for some nonzero integer j_{m} and hence $\alpha_{m}=\alpha^{j_{m}}$ is a translation on H_{0} by the amount $j_{m} a$ for every m. This contradicts the fact that α_{m} is a translation on H_{0} by $\pm 2 \pi N_{m} / m \rightarrow 0$ as $m \rightarrow \infty$ since $1 \leqslant N_{m} \leqslant\left[\Gamma: \Gamma^{*}\right]$. Hence case (1) cannot arise.

Next, we consider case (2) in which both factors H_{1} and H_{2} are nontrivial. The fact that H has dimension 4 and a Euclidean factor of dimension 1 implies that the factor H_{0} is trivial, and hence $M^{*}=H / \Gamma^{*}$ is isometric to the Riemannian product $\left(H_{1} / \Gamma_{1}\right) \times\left(H_{2} / \Gamma_{2}\right)$ by property (2) of the splitting $H=H_{0} \times H_{1} \times H_{2}$. One of these factors H_{1} or H_{2}, say the former, must have a Euclidean factor since H does. H would have a 2-dimensional Euclidean factor if H_{1} had either dimension 2, in which case H_{1} is Euclidean, or dimension 3, in which case H_{2} has dimension 1. Therefore H_{1} has dimension 1 and through all points of M^{*} there are simple parallel closed geodesics of constant length $a>0$ that are tangent to the local Euclidean factor of M^{*}. However, the argument above in the discussion of case (1) shows that for every positive integer m there exists a positive integer N_{m} with $1 \leqslant N_{m} \leqslant\left[\Gamma: \Gamma^{*}\right]$ and a closed geodesic $\gamma_{m}^{*} \subset M^{*}$ of length $2 \pi N_{m} / m$ which is tangent to the local Euclidean factor of M^{*}. In particular, if m is sufficiently large, then $2 \pi N_{m} / m<a$ and it is impossible to have a simple closed geodesic in M^{*} of length a that is tangent to the local Euclidean factor of M^{*} and passes through a point of γ_{m}^{*}; such a closed geodesic would be tangent to and hence a reparametrization of γ_{m}^{*}. This contradiction completes the proof that Γ admits no finite index subgroup $\Gamma^{*}=\Gamma_{1} \times \Gamma_{2}$.

References

[1] A. Avez, Variétés Riemanniennes sans points focaux, C. R. Acad. Sci. Paris 270 (1970) 188-191.
[2] W. Ballmann, Axial isometries of manifolds of nonpositive curvature, Math. Ann. 259 (1982) 131-144.
[3] , Nonpositively curved manifolds of higher rank, Ann. of Math. 122 (1985) 597-609.
[4] W. Ballmann \& M. Brin, On the ergodicity of geodesic flows, Ergodic Theory Dynamical Systems 2 (1982) 311-315.
[5] W. Ballmann, M. Brin \& P. Eberlein, Structure of manifolds of nonpositive curvature. I, Ann. of Math. 122 (1985) 171-203.
[6] W. Ballmann, M. Brin \& R. Spatzier, Structure of manifolds of nonpositive curvature. II, Ann. of Math. 122 (1985) 205-235.
[7] K. Burns \& R. Spatzier, Manifolds of nonpositive curvature and their buildings, in preparation.
[8] S. Chen \& P. Eberlein, Isometry groups of simply connected manifolds of nonpositive curvature, Illinois J. Math. 24 (1980) 73-103.
[9] P. Eberlein, Lattices in spaces of nonpositive curvature, Ann. of Math. 111 (1980) 435-476.
__, Geodesic rigidity in compact nonpositively curved manifolds, Trans. Amer. Math. Soc. 268 (1981) 411-443.
[11] _ A canonical form for compact nonpositively curved manifolds whose fundamental groups have nontrivial center, Math. Ann. 260 (1982) 23-29.
[12] ___ Isometry groups of simply connected manifolds of nonpositive curvature. II, Acta Math. 149 (1982) 41-69.
[13] _, Euclidean de Rham factor of a lattice of nonpositive curvature, J. Differential Geometry 18 (1983) 209-220.
[14] , Rigidity of lattices of nonpositive curvature, Ergodic Theory Dynamical Systems 3 (1983) 47-85.
[15] P. Eberlein \& B. O'Neill, Visibility manifolds, Pacific J. Math. 46 (1973) 45-109.
[16] D. Gromoll \& J. Wolf, Some relations between the metric structure and the algebraic structure of the fundamental group in manifolds of nonpositive curvature, Bull. Amer. Math. Soc. 77 (1971) 545-552.
[17] M. Gromov, Manifolds of negative curvature, J. Differential Geometry 13 (1978) 223-230.
[18] \qquad , Lectures at College de France, Spring, 1981.
[19] M. Gromov, V. Schroeder \& W. Ballmann, Lectures on manifolds of nonpositive curvature, to appear.
[20] P. de la Harpe, Free groups in linear groups, Enseign. Math. 29 (1983) 129-144.
[21] S. Helgason, Differential geometry of symmetric spaces, Academic Press, New York, 1962.
[22] S. Kobayashi \& K. Nomizu, Foundations of differential geometry, Vol. 1, Wiley, New York, 1963, 179-193.
[23] H. B. Lawson \& S.-T. Yau, Compact manifolds of nonpositive curvature, J. Differential Geometry 7 (1972) 211-228.
[24] G. A. Margulis, Discrete groups of motions of manifolds of nonpositive curvature, Amer. Math. Soc. Transl. 109 (1977) 33-45.
\qquad , Nonuniform lattices in semisimple algebraic groups, in Lie Groups and Their Representations (I. M. Gelfand, ed.), Wiley, New York, 1975.
[26] G. D. Mostow, Strong rigidity of locally symmetric spaces, Ann. of Math. Studies, No. 78, Princeton University Press, Princeton, NJ, 1973.
[27] G. Prasad \& M. S. Raghunathan, Cartan subgroups and lattices in semisimple groups, Ann. of Math. 96 (1972) 296-317.
[28] M. S. Raghunathan, Discrete subgroups of Lie groups, Ergebnisse Math. u.i. Grenzgeb., Vol. 68, Springer, New York, 1972.
[29] V. Schroeder, A splitting theorem for spaces of nonpositive curvature, Invent. Math. 79 (1985) 323-327.
[30] J. Tits, Free subgroups in linear groups, J. Algebra 20 (1972) 250-270.

Universität Bonn
University of Maryland
University of North Carolina

