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ISOMETRIC IMMERSIONS OF SASAKIAN MANIFOLDS
IN SPHERES

By SuokicHi TANNO

Introduction. A Sasakian manifold M™ which is isometrically immersed in a
Riemannian manifold *M™** of constant curvature C=x1 is of constant curvature
1, as was shown by Takahashi [7]. The case where the constant curvature of
*Mm™ is 1 is in a very different situation. In this paper we study the case.
The rank of the second fundamental form is called the type number of the
immersion.

THEOREM. Let M™ be a Sasakian manifold which is isometrically immersed
in a Riemannian manifold *M™ of constant curvature 1. Then

(i) the type number k=2, and

(i) M™ is of constant curvature 1 if and only if the scalar curvature S is
equal to m(m—1).

In an #-Einstein space for any point p the Ricci curvature Ry (X, X) is constant
for any unit vector X at p such that »(X)=0. In [7] it was also proved that an
y-Einstein Sasakian manifold M™ (m=5) which is isometrically immersed in a
Riemannian manifold *M™*' of constant curvature 1 is of constant curvature 1.
We generalize this in the following form.

THEOREM. Let M™ (m=5) be a Sasakian manifold which is isometrically im-
mersed in a Riemannian manifold *M™ of constant curvature 1. Assume that
at any point p of M™ we have a subspace Fp of the tangent space at p to M™
such that

(i) dim Fp=m—2,

(il) »p(X)=0 for any XeF,,

(iii) Ru(X, X)=constant for any unit XeF,.

Then M™ is of constant curvature 1.

In §2 we study some properties of contact Riemannian manifolds which satisfy
some conditions on the Ricci tensor or the Riemannian curvature tensor, for ex-
ample, R(X, Y)-R=0 or R(X, Y)-R,=0.

In the last section, we consider invariant submanifolds of Sasakian manifolds.
We see that they are minimal. As a special case, we have invariant submanifolds
M™ of a unit sphere S?*! considered as a Sasakian manifold, which are shown
to be unit spheres if and only if S=m(m—1).
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§1. Structure tensors.

Let (¢, &, », 9) be structure tensors of a contact Riemannian manifold M of m-
dimension. They satisfy

(¢RpY) $6=0, 7(é)=1,

1.2 PP X=—X+9(X)E,

1.3 9(X, Y)=9(¢X, $Y)+9(X)(Y),
1.4 20X, ¢Y)=dp(X, Y),  9(X)=g( X)

for any vector fields X and Y on M. When ¢ is a Killing vector field, M is said
to be a K-contact Riemannian manifold, and we have

(1.5) Vié=—¢X,

1. 6) Ri(X, §)=(m—1)p(X)

L7 9(R(X, )Y, )=09(X, Y)—n(X)(Y),
L7y R(X, £)¢=—X+9(X)E,

where F is the Riemannian connection, R; and R are the Ricci curvature tensor
and the Riemannian curvature tensor, respectively (cf. [1], [8]). If we have

1.8 Txh)Y=9(X, Y)é—9(Y)X,

then M is called a Sasakian manifold or a normal contact Riemannian manifold,
and we have

1.9 R(X, §)Y=9(X, Y)§—n(Y)X.

A Sasakian manifold is a K-contact Riemannian manifold. The Ricci curvature
tensor R; on a Sasakian manifold satisfies

1. 10) Rr1gf=— Ry

where indices ¢, j, 7, ---€(, ---, m) (cf. [5]). Operating ¢ to (1. 10) and using (1. 6),
we have

. 1D Ri($X, ¢Y)=Ri(X, Y)—(m—1p(X)n(Y).

§2. Some conditions on the Ricci curvature tensor and the Riemannian
curvature tensor.

The curvature transformation R(X, Y) acts on the tensor algebra as a deriva-
tion, And the condition R(X, Y)-R=0 was discussed by Nomizu [2] for hypersur-
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faces of Euclidean spaces. While the condition R(X, Y)-R:=0 was studied by
Tanno [10] for hypersurfaces of Euclidean spaces.

ProposiTiON 2.1. Let M be a K-contact Riemannian manifold. Then the
following conditions are equivalent:

(i) M is an Einstein space; Ri=ay,

(ii) The Ricci curvature tensor is parallel; VR,=0,

(ili) RX, Y)-Ri=0  for any X and Y,

iv) R(X, &-R,=0  foramy Y.

Proof. (i)—(i)—({ii)—(iv) is clear. Assume condition (iv), which is equivalent to
@1 R(R(X, &)U, V)+Ru(U, R(X, §)V)=0
for any vectors U and V. Put V=&, Then, using (1. 6), (1. 7) and (1. 7)’ we have
2.2 (m—1g(X, U)—Ri(X, U)=0.

Therefore M is an Einstein space. Q.ED.
If the Ricci curvature tensor R; is of the form

2. 3) Ri=ag+bnQ7,

where « and b are functions on M, then M is called an »-Einstein space. If m>3,
a and b are constant on a K-contact Riemannian manifold. A Sasakian manifold
M is an 7-Einstein space if and only if

@9 (RX, Y)-R)(U, V)=blp(U)g(V, X)+5(V)9(U, X)l9(Y)
—blp(U)g(V, Y)+9(V)o(U, Y)]n(X)

holds good for some function b on M. The necessity is an immediate consequence
of (1.9) and (2.3). While the sufficiency will be verified in proposition 2. 2. By
putting Y=¢ in (2. 4), we have

2.5 (R, & R)(U, V)=blnp(U)g(V, X)+n(V)g(U, X)—29(T)np(V )p(X)].

ProposITION 2.2. A K-contact Riemannian manifold is an 13-Einstein space
if and only if (2.5) holds for some function b on M.

Proof. Assume that (2. 3) holds. Then by (1.7) we have (2.5). Conversely
assume that (2. 5) holds. Then as in the proof of Proposition 2.1, we have

(m—1)g(X, U)—R:«(X, U)=0blg(U, X)—n(U)(X)].
Therefore we have
2. 6) Ry(X, U)=(m—1=-b)g(X, U)+bn(X)n(U),

which shows that M is an »-Einstein space.
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THEOREM 2. 3. Let M be a K-contact Riemannian manifold. Then the fol-
lowing conditions are equivalent:

(i) M is of constant curvature 1,

(ii) M is locally symmetric; VR=0,

(ili) R(X, Y)-R=0  for any X and Y,

(iv) R(X, &)-R=0  for any X.

Proof. (1)—(ii)—(iii)—(iv) is clear. Assume condition (iv), which is equivalent to

2.7 R(X, &)(R(U, V)W)—R(R(X, &)U, YW
—R(U, R(X, §)V)W—R(U, V)R, §W)=0
for any U, V and W. If we put U=W=¢ in (2.7), using (1. 7), we have
2.8 R(X, V)E+RE, V)XA9(V)X=29(X) V+9(X, V)E=.
Consider the inner product of Y and both sides of (2.8). Then we have
(2.9) 9(R(X, V)5, Y)+o9(RE V)X, YV)+9(V)e(X, ¥)—29(X)g(V, Y)+9(Y)9(X, V)=0.
Interchanging X and Y in (2.9) and subtracting the result from (2. 9), we get
(2.10) 9(RE, VX, Y)=n(X)g9(V, Y)—n(Y)9(X, V),
where we have used the Bianchi’s identity. (2.10) is written as
(2.11) RE MX=9(X)V—g(X, V5.
If we put U=¢ in (2. 7), using (2. 11) we have
RX, V)W=g(X, W)V—g(W, V)X,

which shows that M is of constant curvature 1.

REMARK. Proposition 2.1 for a Sasakian manifold was given by Takahashi
[7]. (@)e(i) in Theorem 2.3 was given by Tanno [9], generalizing a result by
Okumura [3] for a Sasakian manifold. For (iii) on a Sasakian manifold, see
Takahashi [6].

§3. Sasakian manifolds which are hypersurfaces of a Riemannian manifold
of constant curvature 1.

Let M™ be a Sasakian manifold of m-dimension which is isometrically im-
mersed in a Riemannian manifold *M/™* of constant curvature 1. Then we have
the Gauss and Codazzi equations:

@1 —R(X, Y)=XANY+AXNAY, or
@1 —R(X, V)Z=9(Y, Z)X—9(X, 2)Y+9(AY, Z)AX—9(AX, 2)AY,
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Q. 2) FxA)Y=FrAX,

where A is a (local) (1, 1)-tensor associated with the second fundamental form B
by B(X, Y)=g¢(X, AY){ corresponding to a (local) field of unit normal vectors ¢ to
M. A is symmetric with respect to g. By (3. 1)/, putting Y=¢, we have

3.3) —R(X, §)Z=n9Z)X—9(X, 2)s+9(AZ)AX—9(AX, Z)A&.
By (1.9) and (3. 3) we have
3.4) NWAY)AX=9(AX, Y)AE.

When the trace of A vanishes, M or the immersion is called minimal. The rank
of A is called the type number of the immersion.

LeMMA 3.1. Denoting by 6 the trace of A we have
(3.5 0A—AA+0pAp—pAAP=0.
Proof. Since the Ricci curvature tensor R, is given by
Ri(X, Y)=trace [U-R(X, U)Y],
by (3. 1) we have
(3.6) Ri(X, Y)=(m—1)g(X, Y)+(trace A)g(AX, YV)—9g(AAX, Y).
Replacing X and Y by ¢X and ¢Y in (3. 6), we have
@7 Ri($X, ¢Y)=(m—1)9(¢X, $Y)+09(A¢X, $Y)—g(AA¢X, ¢Y).
By (1.4) ¢ is skew symmetric, and we have
9(A9X, 9Y)=—g(¢AsX, V),
g(AAPX, $Y)=—g(gAASX, Y).
By (1. 3) and (1. 11), (3. 7) is written as
3.8 Ri(X, YV)=(m—1)g(X, Y)—9((0pAs—pAAX, Y).
Then (3. 6) and (3. 8) imply
3.9 g(0A—AA+09Ap—pAAPX, YV)=0.
That is, we have (3. 5). Q.ED.
By (3. 6) the scalar curvature S=trace R, is given by
(3.10) S=m(m—1)+062—trace AA.

LeMMA 3.2. In a Sasakian manifold we have
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3. 11) $R(X, Y)p=—R(X, V)~ XAY+¢XN¢Y.

Proof. Assume that X, Y and Z are (local) vector fields such that (FX),
=FY)p=WFZ)p=0 for a fixed point p of M. By the Ricci identity for ¢:

—(R(X, Y)-$)Z=VxVy))Z—VxV x9)Z,
we have at the point p
—R(X, Y)$2)+¢(R(X, Y)Z)=V x(Vy$)Z)—Vr(V x$)2)
=Vx(g(Y, ZYe—n(2)Y)—Vr(9(X, Z)¢—n(2)X)
=9(Y, ZW 26—V xn)(Z)Y —9(X, ZWré+Tyl2)X
=—g(Y, 2)pX+9(X, 2)Y+9(X, Z2)pY—9(9Y, Z)X.
Therefore operating ¢ we have
—¢R(X, Y)(¢Z)—R(X, Y)Z+7(R(X, Y)Z)§
=9(Y, Z)X=9(X)8)+9(¢X, Z)pY
—9(X, ZYY—9(Y)E)—9¢(9Y, Z2)pX.
Since from (1. 9) we have

WR(X, Y)Z)=9(X, Zy(Y)—g(Y, Z)n(X),

we have

(3.12) —dR(X, Y)9Z—R(X, Y)Z=(XNY)Z—(¢XNPpY)Z.
LemMA 3.3. The (local) tensor A satisfies

(3.13) PAXNPAY=AXNAY,

(3.14) PAPA+0A=AA.

Proof. By (3.1) we have
—¢R(X, V)gZ=p(XNY+AXNAY)pZ

=¢lg(Y, $2)X—9(X, $2)Y+9(AY, $2)AX—g(AX, $Z)AY]
(3. 15)
=—9(Y, 2)pX+9(pX, Z2)pY—9(9AY, Z)pAX+9(pAX, Z)pAY

=—(pXANPY)Z—(pAXNGAY)Z.
Then (3. 13) follows from (3. 1), (3. 11) and (3. 15). Put
EX, Y, Z)=g(9AY, Z)pAX—g(pAX, Z)pAY—g(AY, Z)AX+g(AX, Z)AY.



454 SHOKICHI TANNO

Then by (3. 13) we have E(X, Y, Z)=0. Taking the trace [X—E(X, Y, Z)], we have
—9(pAPAY, Z)—09(AY, Z)+9(AAY, Z)=0,

since trace $A=0. Consequently we have (3. 14).

If the rank of A=<1 everywhere on M, then M is of constant curvature 1 by
(3.1). Assume that the rank of A=2 at some point and hence on some open set.
Then we have two orthonormal vector fields X and Y (locally) such that AX=21X
and AY=pY for non-zero 2 and p on the open set. By (3.4), then, we have
(V) X=29(X, Y)A¢=0. That is, we have »(Y)=0. Next, we put X=Y in (3. 4),
to get 2A6=0. Consequently, Aé=0 on the open set. From now on in this section
we assume that ¢ is an eigenvector of A corresponding to eigenvalue 0. Let

A fy oy 0, 0 Azp=-zv)

IV

be eigenvalues of A. They are continuous. Let p be an arbitrary point of M.
We define subspaces Di(4, g, -+-) of the tangent space T,M by

D,;={XeT,M; AX=iX}.
LeMMA 3.4. If 2x0, then we have
¢D,=Ds_,.
Proof. Let XeD,. By (3.14) we have
19ASX+02X=22X.

Since 4x0, we have ¢ApX=(1—0)X. Operating ¢ we have ¢pApX=(1—0)pX.
Since p(ApX)=g(ApX, &)=g(¢pX, AE)=0, we have ¢pAgX=—ApX. Namely, ApX
=(0—pX. Q.E.D.

By Lemma 3.4, A has the following components with respect to a suitable
basis;

2 0
(0—NE, :

3. 16) A=

0« « + v e e e e e e e e e e OF,

including the cases (p=#6, 2v=0, etc.), where E, is the rX7 identity matrix, etc.
Trace of A is then

0=r0+s0+---+10,
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which can be true only when (i) §=0, or (ii) r=1, s=0, ---, =0, and 0=0.

LEMmMA 3.5. The rank of A<2. If the rank of A=2 at a point p, then non-
zero eigenvalues are A2 and —2A, or A2 and 0—2A at p.

Proof. Assume that the rank of A=3 at some point p. This is the case (i),
since the rank of A=<2 in the case (ii). Therefore we have §=0. Suppose that
D;*0 and D,=0 for non-zero 2, p such that 2y and Ax—p. Then we have non-
zero vectors XeD; and YeD,, and (3. 13) implies

(3.19) ApPXNGY=2uXNY,

where ¢XeD_; and ¢YeD_,. Operating (3.19) to Y we have ¢(Y, ¥Y)X=0, con-
tradicting X=0 and Y=0. Therefore non-zero eigenvalues are 1 and —A. Since
the rank of A=3 by assumption, we have dim D,=2. Suppose that X and Y are
orthonormal vectors in D;. Then (3.13) also implies XA¢Y=XAY. Similarly
we have ¢(Y, Y)X=0, which is a contradiction. Thus the rank of A=2.

THEOREM 3.6. Let M™ be a Sasakian manifold which is isometrically im-
mersed in a Riemannian manifold *M™* of constant curvature 1. If the scalar
curvature S of M™ is equal to m(m—1), then M™ is of constant curvature 1.

Proof. By (3.10) we have 6#*=trace AA. Assume that the rank of A=2
somewhere. Then by Lemma 3.5 trace AA=22+(@—2)* (including the case 0=0).
And hence we get A(6—2)=0, which is a contradiction.

THEOREM 3.7. Let M™ (m=5) be a Sasakian manifold which is isometrically
immersed in a Riemannian manifold *M™" of constant curvature 1. Assume that
for any point p of M™ we have a subspace Fp of the tangent space at p to M™
such that

(i) dim Fp=m—2,

(ii) Fp is orthogonal to &,

(i) Ru(X, X) is constant for any unit vector XeF,.

Then M™ is of constant curvature 1.

Proof. Assume that the rank of A=2 on some open set U containing a point
p. For a unit vector XeD; we have ¢XeDos_; (including the case §=0). Since
7»(X)=0 and dim Fp=m—2 we have some real numbers ¢ and d such that c¢*+d?
=1 and

cX+dpXeF,.
Then by (3. 6) we have
Ri(cX+dpX, cX+d¢pX)=(m—1)+0(c*2+d*(0—2)—(c*2+d* (0 —2)%)
=(m—1)+02—2.
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On the other hand, since m=5, we have ZeD, such that #(Z)=0 and ¢ZeD,.
Similarly there are some real numbers *¢ and *d such that *c?4*d?=1 and

*cZ+4-*doZe Fy.
In this case we have
Ri(*cZ+*d¢pZ, *cZ+*dpZ)=m—1.
Now by condition (iii) we have 20—4%=0, which is a contradiction.

Takahashi [7] proved that: A Sasakian manifold M™ (with pseudo-Riemannian
metric) which is (properly and) isometrically immersed in a (pseudo-) Riemannian
manifold *M™** of constant curvature C=1 is of constant curvature 1.

Therefore we have

TueorReM 3. 8. A Sasakian manifold M™ with scalar curvature m(m—1) which
is isometrically immersed in a Riemannian manifold *M™ of constant curvature
C is of constant curvature 1.

RemArRk. One may apply the same arguments to get Lemmas and Theorems
above for properly and isometrically immersed Sasakian manifolds M™ with in-
definite metrics in a pseudo-Riemannian manifold *M™*! of constant curvature 1.

RemMARK. If M™ is an »-Einstein space, then there exists a field of subspaces
F,, pe M, satisfying the conditions (i), (ii) and (iii) of Theorem 3. 7. Therefore it
is a generalization of Takahashi’s result [7] on an »-Einstein Sasakian manifold.

§4. Invariant submanifolds of Sasakian manifolds.

A submanifold M=M?*+! of a Sasakian manifold *M?* +* with structure tensors
(*@, *&, *, *g) is called invariant if

(i) *¢ is tangent to M everywhere on M,

(i) *¢X is tangent to M for any tangent vector X to M.
An invariant submanifold M has the induced structure tensors (g, &, %, ¢) the restric-
tions of *@, *&, *5, *¢9 to M. For the Riemannian connection */ for *g, the Rieman-
nian connection ¥ for ¢ is given by

4.1 VxY=0(Tx*Y)",

where *X and *Y are any local extensions of vector fields X and Y on M to those
on *M, and Z* means the tangent part of Z to M. Similarly Z¥ means the normal
part of Z in *M. We show that M is a Sasakian manifold: Let X and Y be vector
fields on M. Then

Fxp)Y=Vx(pY)—¢(xY)
=(Vex (@Y ) —*¢(V ox* Y )"
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=((*F.x*¢y* Y )"
=(*g(rX, *Y)e—*p(*Y)*X)"  (by (1. 8))
=9(X, Y)§—n(Y)X.
This shows that the structure is Sasakian. Next we show

ProrosiTION 4. 1. An invariant submanifold of a Sasakian manifold is minimal.

Proof. We adopt the Simons’ method [4]. Let (e, -+, én, dei, -+, den, £) be a
¢-basis. Then for X=e,, we have

B(@X, pX)=CFsx* (@ XN
=((F 2 * ) XN+ (F* Vg * XN
=(*g(*¢* X, * X ) —*n(* X)*¢* XN+ (¥* T wp iy * XN
=My * XN =*G(*F sy * X)N
=*¢B(*¢* X, *X)=*¢B(*X, *¢.X)
=HG((FF g * )k X+* g % XN
=*¢(*g(* X, * XY —*n(* X)* X4-*¢* o x* X)N
=*g*G(*V.x* X)N=— B(X, X).
On the other hand, we have
B(, ) =N
=(—*gFEN=0,
Therefore the mean curvature K:
K=7%[B(e., e.)+B(ge., pe.)l+B(, §)
vanishes. Q.ED.

A Euclidean sphere S#*! has the standard Sasakian structure of constant
curvature 1, and we denote this space by S**+![1].

THEOREM 4.2. A compact and invariant submanifold M™ with scalar cur-
vature S:

S>mim—1)—QCr+1—m)m/(4r—2m~+1)

of a Sasakian manifold S* 1] is an m-dimensional unit spheve.
In particular if S=m(m—1), then M™ is a unit sphere.
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Proof. This follows easily from Simons’ result [4] that: Let M™ be a compact
minimal variety immersed in a unit sphere S*. If

S/m(m—1)>1—n—m)|/2rn—2m—1)(m—1),

then M™ is a unit sphere (Corollary 5. 3. 3, in [4]).
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