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Introduction. When V is a projective variety, we denote by Bir(V)
the group of birational transformations of V onto itself, by Aut(V)
the group of automorphisms of V' (i.e. the group of the biregular
transformations of V onto itself), and by Lin(V) the subgroup of
Aut(V) consisting of the elements induced by the projective trans-
formations of the ambient space which leave V invariant. The last
one is obviously an algebraic group, while Aut(V) has the structure
of an “algebraic group with (eventually) countably-infinite number of
components’.

Let H,,. denote a hypersurface of degree d in the (4 1)-dimen-
sional projective space P,.;, defined by an equation f(X,, Xi, -+, Xn+1)
=0 of degree d. The main results of this memoir are:

(1) If H,a is non-singular and n>2, d>3, then Aut(IH,,s) is
Sinite except the case n=2, d=4.

(2)  If H.a is generic over the prime field and if n>2, d_>3,
then Aut(H,,.) is trivial except the following case: the ground
field has characteristic p=>0 and n=2, d=4.

The exception in (1) is a real one, while in (2) it is likely that
the theorem holds without exception, though we have to leave the
question open. The main part of the proofs consists in showing that
Lin(H,,s) is small. For the sake of completeness we have added a

few known results.

* Major part of this work was done in 1962 at the University of Chicago when the
firstnamed arthur was supported by the National Science Foundation, (G-19801.
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§1. Non-singular hypersurfaces

Let % be an algebraically closed ground field and let 2[X]=
E1 X, X4, -+, Xl be the homogeneous coordinate ring of P,.;. Assume
that our hypersurface H,,.: f(Xo X, --», Xau) =0 is non-singular.
This implies that the homogeneous ideal (f, fy, >, farr) of E[X]
generated by f(X) and by the partial derivatives f;(X)=08/(X)/0X;
is irrelevant (i.e. is a primary ideal beloging to the maximal ideal
(Xo, e, X’n+1>>-

Theorem 1. If H,,. is nonsingular and if n>2, d_>3, then
Lin(H,,s) is finite.

Proof. Since Lin(H) is an algebraic group, it suffices to show
that its connected component Lin(H), is trivial. So we consider a
connected algebraic subgroup G of GL(n+ 2, k) which contains the
scalar matrices {aE|a<€k*} and for which the form f(X) is semi-
invariant, and we wish to prove G= {«E}. For this purpose we must

distinguish two cases.

Case L. The characteristic of k is either zero or a prime p
not dividing the degree d.

Let g be the Lie algebra of G, identified with the tangent space
of G at the origin E. Let £q, and let g=(gi;) be a variable point
of G. Then the g;; are regular functions on G and we can identify &
with the constant matrix (§;), where §,;={§, gi;). Since dim G=
dim g and since GD {aE|acsk*}, G will coincide with {&E} if g
coincides with {BE|pEk}.

Since f(X) is semi-invariant under G we have a polynomial
identity

n+l

<1> f(;ogOiXi’ R ggn-*—l)iXi) = x<8>f<X0> s X’n+1>

for g= (g.;) €G, where % is a rational character of G. -Consider this
equation (1) as a relation between the regular functions gi;; and x on
G, and apply an arbitrary tangent vector &= (&;,)Eg to both sides.

Then we obtain



On the automorphisms of hypersurfaces 349

#netl n

@ BACO G LX) =0, =& .

i=0

Using the Euler identity f(X) = (1/d)>f:(X)X; and putting c=¢'/d,

we have
n+l n+1
(3) Eﬁ(X) (j;oé,,X]~cX,)=0

Now by the Euler identity we have (f, fo, =, fasr) = (fo, ***, fns1), and
by the hypothesis of non-singularity the depth of this ideal is zero.
(For the definition of depth, of. Nagata [8]. For a polynomial ideal
it is equal to the affine dimension of the variety defined by the ideal.)

AN

Put ai= (fo, ==, fir =*, frurr), 0<é<n+1. Then depth a,>1 and depth
(a;, f1) =0, therefore depth a;==1 because we are dealing with homo-
geneous ideals. It follows from this and from the unmixedness theorem

of Macaulay that

a; :ﬂ: a; .
Hence we get

n41

ZOEUX;—*CX,-ECL; .

Since a; is generated by forms of degree d—1>1, the only linear

forms in it is zero. Therefore we conclude &;;=cé;;, 1.e. é=cE, Q.E.D.

Case II. £k is of characteristic p=>0 and d=0 (mod p).

Since G is generated by its Borel subgroups B, and since each B
contains the normal subgroup {wE}, we may assume that G is solvable.
Then G is the semi-direct product of a torus 7" and a connected unipo-
tent group U. We are going to prove T= {«E} and U= {E}.

1) The case of a torus. Assume that a torus 7" in GL(n+2)
leaves the form f(X) semi-invariant. After a suitable linear substi-

tution of the variables X, '+, X1 we may assume that
x(t) 0
t=|  %(t) a1
O xn-&-l(t)
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and ()Xo, =) L@ Xan) =x() f(Xy, +++, X))  where 2,
(0<i<<n+1) and x are rational characters of 7.

If f(1,0,+-,0)#0 then f constains X{ and we have dx=1 (we
write the product of characters additively). 1f £(1,0,-,0)=0 then
there exists at least one index / such that fi(1,0, -, 0)+0 since our
H,,s is non-singular, and then f contains X{'X;, and we have
Xi+ (d—1)%=x. In any case there exists an index / satisfying
Xi+ (d—1)%=2. Similarly, for any index 0<i<nu-+1 there exists
some index j=j(/) with %;4+ (d—1)x;=2 Since the character group
has no torsion we can easily see that there exists a sequence 7,=0, 7,

7s, **+, 1, such that

Ao+ X0 =1,
CX;1+ X,~2= X,
Cx,', + Xo= X,

where ¢=d—1. Eliminating %;, -, %, we get (1—(—c¢)™")x=
(Q—c+cE—-4+(—c)Dx, hence (A—(—c)*™)(dx—2%)=0. Since
c=d—1>1, we get dx,=%  Similarly %=%=:+=%,11, and so
T= {aE}.

2) The unipotents case. Let U be a connected unipotent algebraic
subgroup of GL(n+2) which leaves f(X) semi-invariant. Since U
has no non-trivial rational character, U actually leaves f(X) invariant.
By a suitable change of variables we may assume that U is in the

upper triangular form

1 wg,q voeeee Uy nt1
u= Iooeeeeee U1, n41 weU).
0 |

Let = (4:;) be an arbitrary element of the Lie algebra of U. Then
7;=0 for 7>>j. As in the Case I (but using the invariance of f), we
obtain an identity

n+1

4 z FO S 75 X,=0.
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On the other hand, in the present case the Euler identity shows that
% F(X)X:;=0, and the two vectors (with linear forms as components)
(Xo, X, o+, Xar1) and (ZWO,X,, z‘.m, -+-,0) are linearly independent
over %k if #0. Now we have the following

Lemma 1. Let % be a field and let f,(X), . fan(X) be forms
of the same degree d' in k(X -, Xoul. Put a=§:ﬁ(X)k[X] and

assume

D depth a<1, i) SIAK)Xi=0, i) a2, d>2.
i=0

Then ii) is the only linear relation between {fi(X)} with linear
forms as coefficient. Namely, if 1,(X),, lnu(X) are linear forms
satisfying 2 fi(X)I:(X)=0, then there exists a constant ¢Ek such
that ,(X)=cXo, ***, Lan(X) =cXonu1.

From this lemma and from (4) we get =0, hence U= {E£},
which was to be proved. For the proof of the lemma, we first note
that depth a=1, because if depth a=0 then as in the proof of Case I
we can conclude from > f;(X)X:=0 that Xo& (f1, +**, furr), which is
absurd. Thus depth a=1. Without loss of generality we may assume
that % is an infinite field. Then there exists a matrix (s;;) EGL(n+2, k)
such that, putting f,~'='is.-jf,~ (0<i<n+1), we have depth (f7, -,
frs1)=1. (Obviously, an; “sufficiently general” (s;;) has this property.)
Let (si)7'= (ai7). Then fi=Xayfi. Put Xai,; Xi=Y;, Siauli(X)=
n;(Y), ff(X)=G;(Y). We have

() ZG(YY=0, () XG(Y)h(Y)=0.

Suppose the vector (/,(X), +++, Ln:1(X)) is not proportional to (X, -,
Xot1). Then (h(Y), -++, han(Y)) is not proportional to (Yo, «++, Yoe).
By renumbering Y3, :+, Y, we may assume that /,(Y) contains Y;.
Then

B GO Yk Yeh) =0, Yihe— Yohn#0.

Since depth (G, **+, Gn11) =1 we see as in Case I that the quadratic
form Yiho— Yo/ lies in the ideal generated by G, -+-, Gny. This is
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a contradiction if d'>>2.

Now we assume d'=2. (This case was proved by Prof. M.’ Nagata
for the first time.) Put ¢;= Yihe— Yoh; (1<<j<n+1). Then the ¢;
are linear combinations of G, +++, Gny; with coefficients in 2. On the
other hand ¢; contains Y;Y; but does not contain Y;Y; (i#j, 0), hence
@1, ***, o are linearly independent over k. Therefore G, -+, G4 are

linear combinations of ¢, ***, @.1;. Then we have

(A(XD), - fin (X)) = (Gi(Y) . -, Gun (YD)

= ((pl(Y), ¢n+1<Y)) c (Ym IIO(Y))-
It follows that

1=depth(fY, -+, firr) >depth (Yo, ho(Y)) >n+2—2=n,

this contradicts the assumption 7#>2. Thus the Lemma and the

Theorem 1 are completely proved.

Theorem 2. Let H,a (n>2,d>3) be non-singular. Then
Aut(H,,.) =Lin(H,,s) except the case n=2, d=4.

Proof. 1f n>3, any positive divisor on the non-sigular H,,, is
cut out by a hypersurface of P, according to a theorem of Severi-
Lefschetz-Andreotti ([1], [5]). Therefore the linear system L, of
hyperplane sections on Fl,,, is complete and is a unique base of the
additive semi-group of the linear equivalence classes of positive divisors.
Hence L, is invariant under Aut(F,,.,). From this it follows easily
that Aut(H,,,)=Lin(I,,.).

If n=2, anyway L, is complete because the non-singular H,,, is
projectively normal. If »=2 and d=3 then L, is the anti-canonical
system —K. Hence L, is again invariant under Aut(I1,,). 1f »n=2
and >4, then the canonical system K= L, is invariant under
Aut(H,,.). Let seAut(H,,.). If oLi#L,, take a divisor DEL,.
Then ¢D—D is not ~0, while (d—4)(eD—D)~0. Put m=d—4,
m(eD—D)= (). Then the algebraic function '™ defines an un-
ramified covering of I1,,,, which is a contradiction because the funda-
mental group =, (H,,s) is trivial (Cf. [3], [5]). Therefre L, is invariant

under Aut(H.,..), and the proof is completed.
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Theorem 3. Non-singular surfaces Ih,s in Ps are minimal
models for d>4. Hence we have Bir(Hya)=Aut(Hy,.) (d>4).

Proof. Assume d_>4. The canonical class K of H,,a is (d—4)
times hyperplane section. Hence [(K)=p,>0. Therefore H,. is
neither rational nor birationally equivalent to a ruled surface. By a
fundamental theorem of Castelnuovo-Enriques-Zariski ([12]) H,. has
a minimal model. If I'f,, is not minimal then it must contain an
exceptional curve C of the first kind. But then p,(C)=0, (C*)=—1,
2p.(C)—2=(C?»+ (CK), hence —1=(CK). This is impossible
because C>0 and (CK)= (d—4)deg(C). Therefore I',,; is minimal.

Theorem 4. The group Bir(Fh,.) = Aut(Fh.4) of a non-singular
quartic surface in Py is discrete (i.e. Aut(Hye)o= {e}), but there
exist examples of non-singular He.. with infinite number of auto-
morphisms.

Proof. The first assertion follows from [6] (because p,>0 and
h"=0) or simply from the elementary fact that, if V' is a normal
projective variety on which the linear system of hyperplane sections
is complete, then the linear part of Aut(V), (and if V is regular,
Aut(V), itself) coincides with Lin(V),. The second assertion is
classical ([4], [9], [10]). The example of Fano-Severi is as follows
(for other examples, see [10] p. 279); We assume that the charac-
teristic is zero. Let F be a non-singular quartic surface in Ps containing
a non-sigular curve C of genus 2 and of degree 6. Let C' be a
hyperplane section of F. Then (C*)=2, (CC')=6, (C*)=4. Let
(t,u), t=0, be a solution of the Pell equation #*—7x4*=1 and put
|D|=](—3u)C+uC'|. Then we have (D*) =2, deg(D)>0, p.(D)
=2, [(D)>3. One can prove, by the theory of moduli of K3-surfaces,
that C and C’ form a base of the divisor class group Pic(F) provided
that F is sufficiently general. (Cf. [10] p. 275.) Assuming this, it
follows that there is no positive cycle X with (X*)= —2. Hence
there is no positive cycle X with (X*)<C0. By Riemann-Roch on F
we have [(X)>2 for} X>0. In particular, |D| has no fixed com-

ponent. |/[)] is irreducible, for otherwise it would be composite
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with a pencil {D;} and D would be algebaically equivalent to sD;,
s>>1, hence 2= (D?*) =s*(D)}), which is absurd. A generic member of
|D] is non-singular, because if it has a singular point @ then @ is
a base point of |D| by Bertini (characteristic zero), hence (D?)>4,
contradiction. By Riemann-Roch we have /([D-D) =2, therefore /(D)
=3. Thus |D]| determines a rational surjective mapping ¢: F—P,.
Since F is not rational ¢ is not birational, and since (1)*)=2 we have
[(F): k(p(F))] =2. Therefore there exists an automorphism of 2(F)
which induces (since [ is a minimal model) an automorphism ¢ of F
satisfying ¢*=¢, D°=D. There are infinitely many solutions (¢, z) of
£—"7iw*=1. I two different solutions (¢,u#) and (¢',#') define one
and the same automorphism ¢, then we have |C'?|=|C’|, hence
sELin(F). But F depends on 33 parameters. (Proof: Non-singular
curves of genus 2 depend on 3 parametes of moduli. On each such
curve C there are oo? complete linear systems of degree 6, and each
of which defines embeddings of C in P,. By means of generic pro-
jection from P, into P; we get embeddings of C in P;, which depend
on 19 parameters. Therefore non-singular sextic curves of genus 2 in
P, depend on 3+ 2+ 19=24 parameters. Given such a curve C, the
linear system L (resp. M) of cubic (resp. quartic) surfaces passing
through C has dimension 2 (resp. 11) at least. One can show
that a generic member of L is non-singular. Then it is easy to
see that a generic member F of M is non-singular. Now on F we
have dim|C|=2. Hence F depends on 24-+11—2=233 parameters.)
On the other hand it is easy to see that a quartic F' in P; of which
the group Lin(F') contains an element of order 2 depends on 27
parameters at most (Cf. §2). Thus, if we take a sufficiently general
F, then Aut(F) contains infinitely many elements of order 2.

Remarks. 1. The equality Bir(H,,.) = Aut(H,,s) and the finite-
ness of this group is obvious if d>n+2, because in that case the
canonical system on I7,,, is ample (cf. [6]).

2. Let O be the sheaf of germes of regular sections of the tangent

bundle of a vaiety V. Then there is a canonical monomorphism of
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the Lie algebra of Aut(V), to H*(V,®) ([7]), which is an isomor-
phism in characteristic zero as is well known. Kodaira-Spencer
(Lemma 14.2 of [13]) showed H'(H,,s, ®) =0 (#n>2, d>3) in the
classical case by an analytic method. Our proof of Th. 1 in the
classical case is more algebraic. We do not know whether H'(H,,4,

®)=0 in the abstract case.

§2. Generic hypersurfaces

Lek £ be the universal domain of characteristic p_>0, and let %,
be the prime field in k. A hypersuface H,,, is called generic if it
is generic over k,, i.e. if it is defined by a homogeneous equation
(X, +++, Xas1) =0 of which the ("+g+ 1) coefficients are algebraically
independent over k,. A generic H,,s is non-singular.

Theorem 5. [f H,,. is generic and if n>2, d >3, then Lin(Ha,q)
= {e}.

Proof. Putting m=n+2, we consider a generic form f(X) of
degree d >3 in k[X, -+, Xa), where m_>4. We wish to prove that
if A= (a;;)€GL(n,k) leaves f(X) semi-invariant:

fLAX)) =af(X), a<k*,
then A=cE, for some cEk*. Write A=A.A., where A, and A.

commute and are respectively semi-simple and unipotent. Then A,
and A, also leave f(X) semi-invariant. This is a standard fact from
the theory of algebraic groups. So it suffices to consider semi-simple

matrices and unipotent matrices.

() Semi-simple case. Let A€GL(m, k) be semi-simiple and
assume f(A(X))=cf(X). By a suitable matrix T" we bring A into
the diagonal form;

alE,, 0
TAT'=B= al,,
0 .as E,,

where E,, is the unit matrix of size r,, 2 ri=m, and a;#a; ((#J).
i=1
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The centralizer I of B in GLGnu, k) is GLG, k) X -+ X GLG, k).
The homogeneous space GL(m)/H is a variety defined over %, and its
dimension is m*—337=233r;r;. Consider the natural map ¢: GL(m)
—>GL(n)/H and put <p(l';l)=t. TH=¢7'(t) is a variety defined over
ko(t). Take a point S€TH which is algebraic over %,(z). Then
SAS'=DB and

t.d (S/k0)<t.c1.(t//eo)<2§ rir;

where t.d. means transcendence degree. Put f(S7'(X))=g(X). Then
g(B(X))=cg(X). We are going to prove that, if s=>1 (i.e. if A is
not a scalar matrix), then more than 2>17;7; monomials of degree d
are missing in g(X). Then, since f(X)=g(S(X)), the original form
Ff(X) is not generic, contrary to our assumption. Therefore A must
be scalar.

In order to prove the assertion, we change the notation and denote

the variables by
Xl;], ttt Xl»n; X2:1> Y XZ}rz; ttty Xs’h Tt Xx’r. .

(X)) will denote (X4, -+, Xi,,,). Then we can express the equation
g(BX))=cg(X) as follows: gla(Xy), -+, (@, (X)) =cg((X1), -+,
(X).

Among the monomials of degree d, we consider only those which
are divisible by X¢3°, and compare their coefficients in the equation,
trying to find that more than 23r,7; of such monomials are absent.
Therefore we may assume d=3. We classify the cubic monomials

into four classes as follows.

C.= {cubic in (X))}. 2C=r:(ri+ 1) (r:4+2)/6
C,;= {quadratic in (X;) and linear in (X))}. i<j.
$8Ci=rir;Gri+ 1) /2
D= {linear in (X;) and quadratic in (X;)}. <<j.
8D;;=rir;(r;+1)/2.
C:ji= {linear inv (X)), (X;) and (X)}. i<<j<l

#Cm:h?‘j"z.
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Here #C; implies the number of elements in C;, etc.
Ci; and D;; cannot co-exist in g(X) since aja;#a,a}. Similarly,

for each 1<(i<s, at most one out of the classes

Dy, Y Di-l,i, Ci, Ci, 5.2 LR Ci,s
can appear in g(X). Now, for any pair (7, ;) with 1<i<;j<ls, we
define E;; as follows:

a) If both C;, and D.; are absent in g(X), then
E;=C;UD;;.
b) If C;; is absent but D,; is present in g(X), then
E;=C,UC;.
c) If C; is present in g(X), then
E;=D,;UC;.
If C;cE;NE. (i<j<), then C; and C; co-exist in g(X), which
is impossible. Similarly C;C E;;NE,; (j<</<</) is impossible. If C;C
E;NE,; (I<<i<j), then both C,; and D,; appear in g(X), which is

again impossible. Therefore the sets E; (i<<j) are mutually disjoint.

On the other hand, one can easily verify

#E;j>27‘,‘7‘j
where the equality can hold only when 7;=7;=1. Since all E;; are
absent in g(X), at least S1#F;; monomials are missing and we have
SHE;>23 5, the equality holds only when s=m, ri=r,==r,=1.
In this last case, since m_>4, at least one of X, X, X, and X, X, X, is

absent in g(X) also. Thus our assertion is proved.

(I Unipotent case. Let AEGL(n, k) be a unipotent matrix,
A+ E, and let f(X) be a form of degree d_>3 which is semi-invariant
under A. Then actually f is invariant under A. We wish to show
that £(X) is not generic. Let J be the Jordan normal form of A.
We assume that the blocks in J are arranged in the order of increasing
size. For 1<i<m—1 we have J(X,)=X;+e Xin, and J(Xn) = Xn,
where e;=10or 0. We say J is of type (e, ez, ***,em1). We shall say
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that an index i is regular if e;=1. We also define a number «(J) by
«=s{(3 )+,

where the sum runs over the regular indices of J. The proof of our
theorem depends upon the follwing estimates.

Lemma 2. Let g(X) be a form of degree d>3 which is trans-
formed into itself by J. Then the coefficients of g satisfy at least
a(J) linearly independent linear relations with coefficients in k.

Lemma 3. Let A be a unipotent matrix with Jordan form J.
Then a(J)>td.(A/k,).

Assuming these lemmas, we choose a non-singular matrix 7" with
algebraic coefficients over £,(A;;) such that TA=JT. Let f(X)=
g(T(X)). Then g is transformed into itself by J. Since the coeth-
cients of f depend rationally on the coefficients of g and the A,;,
lemmas 1 and 2 tell us that £ is not a generic form, proving the
theorem.

To prove Lemma 1, order the monomials of degree d lexico-
graphically; TIX/<<ITX" if a;=0b; (i<<s), a,<<b,. Now observe that
if u=T11X¢, then:

(6) /‘(J(X)):H(Xi'l_eiXi-l—l)ai:/l(X)"l"%ﬂ(f;w'ﬂ

In particular, regarded as a transformation on the space spanned by
the monomials, J has the form E+ 4, where 4= (¢u) is strictly tri-

angnlar. Now suppose that g=> a.-#. Then:
"
(7> 2“#'#"‘2(2(3#1/"’#)'V:Zap.‘ﬂ
" v I I

Comparing coefficients we find that > cu -a,=0 for every monomial »
v

of degree d. Thus the coefficients of g satisfy rank (c.,) linearly
independent linear equations with coefficients in k.. If z is any
monomial, let z' be its predecesar in the lexicographic order. Say
that p is regular for J if c./#0. Since (cw) has strict triangular
form, rank (c.) is at least equal to the number of regular z. Thus

we must show:



On the automorphisms of hypersurfaces 359

Lemma 4. There are at least a(J) regular monomials.

Proof. Suppose s is a regular index for J, and let u= <ﬁ X?‘) . ¢
Then ¢'=(X.n/X.) # and we see easily that c,./=a,. I;; 1particulalr,
if the characteristic p does not divide a, then g is regular. Now fix
a regular index s. If a,=1, the number of monomials of the form
HSIX?‘-X;” is just the number of monomials of degree d—1 in X, ---,
:;(s_l and X, i.e. (S—Zfi_12> Furthermore, since d_>3, there is a
regular monomial of the form X?Xi7% or X3X%73 depending on the

characteristic. Thus there are at least Z((S—L—i‘i_lz)-l- 1) regular
monomials in all where s runs over the regzllar indices for J. Since
this function is monotonic increasing in d, and d_>3, the lemma is
proved.

The idea behind the proof of Lemma 3 is the following. Each
regular index in J gives a contribution of about m?/2 to «(J), and
t.d. (ko (Ai) /k)<m?. Thus if there are three regular indices, things
are easy. If there are fewer than three regular indices, one gets finer
estimates on k,(A;;)/ky which again establish the lemma. The actual
proof involves consideration of four separate cases.

We begin with a lemma giving an upper bound for t.d.(k(N:;) /k0)
where N is a nilpotent matrix.

Suppose that N is an m by m nilpotent matrix. Let V;=image
of N, and B;=dimV,;. Then B>p>p;>---. We say that N is of
type (Bo, B1, =*+). Let B(N)zZZ: (B:i— Bi+1) Bir1. The following lemma
is basic:

Lemma 5. Let the notation be as above. Then
t.d. (ko(N.s) [ k) <B(IN).

Proof. N is determined by the subspace V) of Vi, by its restric-
tion to V, and by the images in V,; of a set of generators of Vy/V,
under N. V; depends on at most (By—f.)-B: parameters, the same
holds true for the images of the g,—p: generators of V,/V,. An in-

duction argument now gives the desired result, since N restricted to
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Vi1 is of type (B, B2, +++).

We are now ready to prove Lemma 3. Let A=E+ N’, J=E+ N.
Then t.d.(ky(A:;) /o) <B(N')=B(N). There are four cases to consider,
according to the maximum of the sizes of the blocks of J. (Remember

that the blocks are arranged in the increasing order of size.)

(1) If Jis of type (+--1,1,1) then t.d.(k(A:)/ ko) <in*—m.
For 3(N)<imn®—m always.

(2) If Jis of type (-+-0,1,1) then t.d.(ko(Aij>/]\’o)<—'§—ﬂl2.
For N®=0 in this case, and N is of type (m, 7, 8, 0).

(3) If Jis of type (+-+1,0,1) then t.d.(ko(Aij)/ko)<%‘7n»2.
For N?=0 in this case, and N is of type (m, 7, 0).

(4) If Jis of type (+++0,0,1) then t.d.(ko(A:)/ky)<2m—2.
In this case, N is of type (m, 1, 0).

Now let us estimate a(J) in the 4 cases. In cases (1), m—1,
m—2 and m—3 are all regular for J. Thus a(J)>(7§l>+<m9_ 1>+

<m2— 2>+3. The other cases are similar. Thus we are reduced to

proving the following four inequalities. If m_>4, then:

e)) (7;) + (m2— 1) + <7712— 2) + 3>m?*—m,
~1 2
) (m) + (m ) + 2>,
2 2 3
(3) ('él) + (mz— 2) + 2>—%mz,

(4) ('él) +1>2m—2.

These just squeak through. This completes the proof of Lemma 3.
Combining Theorems 2 and 5, we see that Aut(H,,,)= {¢} for
a generic H,,, except the case n=2, d=4. On the other hand, in
characteristic zero there is a theorem of M. Noether-Andreotti-Salmon
([1]) according to which the Picard group of a generic surface of
deg>4 in P; is generated by the hyperplane section. This proves

Aut(H,,,) =Lin(FHh,,) = {e} for generic quartics in characteristic zero.
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It seems that the theorem of Noether-Andreotti-Salmon can be extended

to the positive characteristic case by modifying the existing proofs.

We wish to come back to this problem in future.
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